Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> TRP Channel>>Umbellulone

Umbellulone Sale

目录号 : GC65211

Umbellulone 是 Umbellularia californica 叶中的一种活性成分。在肽能、伤害感受神经元亚群中,Umbellulone 刺激 TRPA1通道,并通过这一机制激活三叉神经血管系统。

Umbellulone Chemical Structure

Cas No.:546-78-1

规格 价格 库存 购买数量
5mg
¥3,060.00
现货
10mg
¥4,680.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Umbellulone is an active constituent of the leaves of Umbellularia californica. Umbellulone stimulates the TRPA1 channel in a subset of peptidergic, nociceptive neurons, activating the trigeminovascular system via this mechanism[1].

Umbellulone, from µM to sub-mM concentrations, selectively stimulates transient receptor potential ankyrin 1-expressing HEK293 cells[1].

Umbellulone (50-250 nM/5ul) causes an acute nocioceptive response in a dose-dependent manner in Trpa1+/+ mice[1].Umbellulone (150 µg/kg; intravenous or intranasal) do not affect systemic blood pressure[1].Umbellulone (30-150 μg/kg; i.v.) increases meningeal blood flow in a dose-dependent manner[1].

[1]. Nassini R, et al. The 'headache tree' via umbellulone and TRPA1 activates the trigeminovascular system. Brain. 2012 Feb;135(Pt 2):376-90.

Chemical Properties

Cas No. 546-78-1 SDF Download SDF
分子式 C10H14O 分子量 150.22
溶解度 DMSO : 250 mg/mL (1664.23 mM; Need ultrasonic) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.6569 mL 33.2845 mL 66.569 mL
5 mM 1.3314 mL 6.6569 mL 13.3138 mL
10 mM 0.6657 mL 3.3285 mL 6.6569 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Umbellulone modulates TRP channels

Pflugers Arch 2011 Dec;462(6):861-70.PMID:22038323DOI:10.1007/s00424-011-1043-1.

Inhalation of Umbellulone (UMB), the offensive principle of the so-called "headache tree" (California bay laurel, Umbellularia californica Nutt.), causes a painful cold sensation. We therefore studied the action of UMB and some derivatives devoid of thiol-trapping properties on the "cold" transient receptor potential cation channels TRPA1 and TRPM8. UMB activated TRPA1 in a dose-dependent manner that was attenuated by cysteine-to-serine isosteric mutation in TRPA1 (C622S), while channel block was observed at higher concentration. However, although activation by mustard oil was completely prevented in these mutants, UMB still retained activating properties, indicating that it acts on TRPA1 only as a partial electrophilic agonist. UMB also activated TRPM8, but to a lower extent than TRPA1. Removing Michael acceptor properties of UMB (reduction or nucleophilic trapping) was detrimental for the activation of TRPA1, but increased the blocking potency. This was, however, attenuated by acetylation of the hydroxylated analogs. All UMB derivatives, except the acetylated derivatives, were also TRPM8 activators. They acted, however, in a bimodal manner, inhibiting the channel more potently than UMB, and with tetrahydro-UMB being the most potent TRPM8 activator. In conclusion, UMB is a bimodal activator of TRPA1 and a weak activator of TRPM8. Non-electrophilic derivatives of UMB are better TRPM8 activators than the natural product and also potent blockers of this channel as well as of TRPA1. The lack of effects of the acetylated UMB derivatives suggests that steric hindrance may prevent access to the recognition site for the bicyclic monoterpene pharmacophore on TRPA1 and TRPM8.

Dysregulation of serum prolactin links the hypothalamus with female nociceptors to promote migraine

Brain 2022 Aug 27;145(8):2894-2909.PMID:35325034DOI:10.1093/brain/awac104.

Migraine headache results from activation of meningeal nociceptors, however, the hypothalamus is activated many hours before the emergence of pain. How hypothalamic neural mechanisms may influence trigeminal nociceptor function remains unknown. Stress is a common migraine trigger that engages hypothalamic dynorphin/kappa opioid receptor (KOR) signalling and increases circulating prolactin. Prolactin acts at both long and short prolactin receptor isoforms that are expressed in trigeminal afferents. Following downregulation of the prolactin receptor long isoform, prolactin signalling at the prolactin receptor short isoform sensitizes nociceptors selectively in females. We hypothesized that stress may activate the kappa opioid receptor on tuberoinfundibular dopaminergic neurons to increase circulating prolactin leading to female-selective sensitization of trigeminal nociceptors through dysregulation of prolactin receptor isoforms. A mouse two-hit hyperalgesic priming model of migraine was used. Repeated restraint stress promoted vulnerability (i.e. first-hit priming) to a subsequent subthreshold (i.e. second-hit) stimulus from inhalational Umbellulone, a TRPA1 agonist. Periorbital cutaneous allodynia served as a surrogate of migraine-like pain. Female and male KORCre; R26lsl-Sun1-GFP mice showed a high percentage of KORCre labelled neurons co-localized in tyrosine hydroxylase-positive cells in the hypothalamic arcuate nucleus. Restraint stress increased circulating prolactin to a greater degree in females. Stress-primed, but not control, mice of both sexes developed periorbital allodynia following inhalational Umbellulone. Gi-DREADD activation (i.e. inhibition through Gi-coupled signalling) in KORCre neurons in the arcuate nucleus also increased circulating prolactin and repeated chemogenetic manipulation of these neurons primed mice of both sexes to Umbellulone. Clustered regularly interspaced short palindromic repeats-Cas9 deletion of the arcuate nucleus KOR prevented restraint stress-induced prolactin release in female mice and priming from repeated stress episodes in both sexes. Inhibition of circulating prolactin occurred with systemic cabergoline, a dopamine D2 receptor agonist, blocked priming selectively in females. Repeated restraint stress downregulated the prolactin receptor long isoform in the trigeminal ganglia of female mice. Deletion of prolactin receptor in trigeminal ganglia by nasal clustered regularly interspaced short palindromic repeats-Cas9 targeting both prolactin receptor isoforms prevented stress-induced priming in female mice. Stress-induced activation of hypothalamic KOR increases circulating prolactin resulting in trigeminal downregulation of prolactin receptor long and pain responses to a normally innocuous TRPA1 stimulus. These are the first data that provide a mechanistic link between stress-induced hypothalamic activation and the trigeminal nociceptor effectors that produce trigeminal sensitization and migraine-like pain. This sexually dimorphic mechanism may help to explain female prevalence of migraine. KOR antagonists, currently in phase II clinical trials, may be useful as migraine preventives in both sexes, while dopamine agonists and prolactin/ prolactin receptor antibodies may improve therapy for migraine, and other stress-related neurological disorders, in females.

The 'headache tree' via Umbellulone and TRPA1 activates the trigeminovascular system

Brain 2012 Feb;135(Pt 2):376-90.PMID:22036959DOI:10.1093/brain/awr272.

The California bay laurel or Umbellularia californica (Hook. & Arn.) Nutt., is known as the 'headache tree' because the inhalation of its vapours can cause severe headache crises. However, the underlying mechanism of the headache precipitating properties of Umbellularia californica is unknown. The monoterpene ketone Umbellulone, the major volatile constituent of the leaves of Umbellularia californica, has irritating properties, and is a reactive molecule that rapidly binds thiols. Thus, we hypothesized that Umbellulone stimulates the transient receptor potential ankyrin 1 channel in a subset of peptidergic, nocioceptive neurons, activating the trigeminovascular system via this mechanism. Umbellulone, from µM to sub-mM concentrations, selectively stimulated transient receptor potential ankyrin 1-expressing HEK293 cells and rat trigeminal ganglion neurons, but not untransfected cells or neurons in the presence of the selective transient receptor potential ankyrin 1 antagonist, HC-030031. Umbellulone evoked a calcium-dependent release of calcitonin gene-related peptide from rodent trigeminal nerve terminals in the dura mater. In wild-type mice, Umbellulone elicited excitation of trigeminal neurons and released calcitonin gene-related peptide from sensory nerve terminals. These two responses were absent in transient receptor potential ankyrin 1 deficient mice. Umbellulone caused nocioceptive behaviour after stimulation of trigeminal nerve terminals in wild-type, but not transient receptor potential ankyrin 1 deficient mice. Intranasal application or intravenous injection of Umbellulone increased rat meningeal blood flow in a dose-dependent manner; a response selectively inhibited by systemic administration of transient receptor potential ankyrin 1 or calcitonin gene-related peptide receptor antagonists. These data indicate that Umbellulone activates, through a transient receptor potential ankyrin 1-dependent mechanism, the trigeminovascular system, thereby causing nocioceptive responses and calcitonin gene-related peptide release. Pharmacokinetics of Umbellulone, given by either intravenous or intranasal administration, suggest that transient receptor potential ankyrin 1 stimulation, which eventually results in meningeal vasodilatation, may be produced via two different pathways, depending on the dose. Transient receptor potential ankyrin 1 activation may either be caused directly by Umbellulone, which diffuses from the nasal mucosa to perivascular nerve terminals in meningeal vessels, or by stimulation of trigeminal endings within the nasal mucosa and activation of reflex pathways. Transient receptor potential ankyrin 1 activation represents a plausible mechanism for Umbellularia californica-induced headache. Present data also strengthen the hypothesis that a series of agents, including chlorine, cigarette smoke, formaldehyde and others that are known to be headache triggers and recently identified as transient receptor potential ankyrin 1 agonists, utilize the activation of this channel on trigeminal nerves to produce head pain.

Hemisynthesis of dihydroumbellulols from Umbellulone: new cooling compounds

J Agric Food Chem 2011 Jan 26;59(2):677-83.PMID:21190364DOI:10.1021/jf103989j.

Although menthol is a common ingredient used in food products, other molecules also evoke coolness through stimulation of the somatosensory system. To discover new molecules having cooling properties, we virtually screened the chemical structures of terpenes and sesquiterpenes to find structures that are similar to (-)-menthol. We realized that dihydroumbellulols could be good candidates. Although their occurrence was reported in Hyptis pectinata Poit, we were unable to obtain these molecules from the plant or to prove their natural occurrence. Therefore, we extracted (-)-(R)-umbellulone from Umbellularia californica Nutt. The (-)-(R)-umbellulone was reduced to prepare (1R,2R/S)-1-isopropyl-4-methylbicyclo[3.1.0]hex-3-en-2-ol, (1R,4R/S)-1-isopropyl-4-methylbicyclo[3.1.0]hexan-2-one, and (1R,2RS,4RS)-1-isopropyl-4-methylbicyclo[3.1.0]hexan-2-ols, named dihydroumbellulols. Sensory analysis suggested that (1R,2R,4S)-dihydroumbellulol has a pleasant, trigeminal cooling effect, about 2-3 times less cooling than (-)-menthol, with a weak odor slightly reminiscent of eucalyptol. In addition, a previously unreported compound was discovered, (-)-(1R)-1-isopropyl-4-methylenebicyclo[3.1.0]hexan-2-one.

A novel, injury-free rodent model of vulnerability for assessment of acute and preventive therapies reveals temporal contributions of CGRP-receptor activation in migraine-like pain

Cephalalgia 2021 Mar;41(3):305-317.PMID:32985222DOI:10.1177/0333102420959794.

Aim: Development and characterization of a novel injury-free preclinical model of migraine-like pain allowing mechanistic assessment of both acute and preventive treatments. Methods: A "two-hit" hyperalgesic priming strategy was used to induce vulnerability to a normally subthreshold challenge with Umbellulone, a transient receptor potential ankyrin 1 (TRPA1) activator, in uninjured female and male C57BL/6 mice. Priming (i.e. the first hit) was induced by three consecutive daily episodes of restraint stress; repeated Umbellulone was also evaluated for potential priming effects. Sixteen days after the first restraint stress, mice received inhalational Umbellulone (i.e. the second hit) to elicit migraine-like pain. Medications currently used for acute or preventive migraine therapy including propranolol (a beta blocker) and sumatriptan (5HT1B/D agonist), as well as olcegepant, an experimental calcitonin gene related peptide (CGRP) receptor antagonist and nor-Binaltorphimine (nor-BNI), an experimental long-acting kappa opioid receptor (KOR) antagonist, were investigated for their efficacy to block priming and prevent or reverse umbellulone-induced allodynia in primed animals. To assess migraine-like pain, cutaneous allodynia was determined by responses to periorbital or hindpaw probing with von Frey filaments. Results: Repeated restraint stress, but not Umbellulone exposure, produced transient cutaneous allodynia that resolved within 16 d. Restraint stress produced long-lasting priming that persisted beyond 16 d, as demonstrated by reinstatement of cutaneous allodynia following inhalational Umbellulone challenge. Pretreatment with propranolol or nor-BNI prior to restraint stress prevented both transient cutaneous allodynia and priming, demonstrated by a lack of umbellulone-induced cutaneous allodynia. Following establishment of restraint stress priming, olcegepant, but not propranolol or nor-BNI, prevented umbellulone-induced cutaneous allodynia. When administered 1 h after Umbellulone, sumatriptan, but not olcegepant, reversed umbellulone-induced cutaneous allodynia in restraint stress-primed rats. Conclusion: We have developed a novel injury-free model with translational relevance that can be used to study mechanisms relevant to migraine-like pain and to evaluate novel acute or preventive treatments. Restraint stress priming induced a state of vulnerability to a subthreshold stimulus that has been referred to as "latent sensitization". The development of latent sensitization could be prevented by blockade of stress pathways with propranolol or with a kappa opioid receptor antagonist. Following establishment of latent sensitization, subthreshold stimulation with Umbellulone reinstated cutaneous allodynia, likely from activation of meningeal TRPA1-expressing nociceptors. Accordingly, in restraint stress-primed animals, sumatriptan reversed umbellulone-induced cutaneous allodynia, supporting peripheral sites of action, while propranolol and nor-BNI were not effective. Surprisingly, olcegepant was effective in mice with latent sensitization when given prior to, but not after, Umbellulone challenge, suggesting time-dependent contributions of calcitonin gene-related peptide receptor signaling in promoting migraine-like pain in this model. Activation of the calcitonin gene-related peptide receptor participates in initiating, but has a more limited role in maintaining, pain responses, supporting the efficacy of small molecule calcitonin gene-related peptide antagonists as preventive medications. Additionally, the effectiveness of sumatriptan in reversal of established pain thus suggests modulation of additional, non-calcitonin gene-related peptide receptor-mediated nociceptive mechanisms. Kappa opioid receptor antagonists may represent a novel preventive therapy for stress-related migraine.