Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> TRP Channel>>TRPM8 Antagonist

TRPM8 Antagonist Sale

目录号 : GC30893

TRPM8 antagonist 2 (TRPM8 Antagonist) is a potent and selective antagonist of TRPM8 with IC50 of 0.2 nM that can be used for the pharmacological treatment of neuropathic pain syndromes.

TRPM8 Antagonist Chemical Structure

Cas No.:259674-19-6

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥891.00
现货
5mg
¥810.00
现货
10mg
¥1,350.00
现货
50mg
¥3,780.00
现货
100mg
¥6,300.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Animal experiment:

Mice[1]Icilin, a TRPM8 agonist, is dissolved in 20% DMSO and 1% Tween 80 in distilled water and injected intraperitoneally (i.p.) in a volume of 10 mL/kg. Each animal is acclimatized for 30 min for two consecutive days before icilin administration. TRPM8 antagonist 2 (compound 14) stock is prepared in DMSO and diluted in saline for injections. Gabapentin is dissolved in saline and administered s.c. at the dose of 25 mg/kg 60 min prior to icillin injection. Control animals receive the vehicle injection[1].

References:

[1]. Bertamino A, et al. Identification of a Potent Tryptophan-Based TRPM8 Antagonist With in Vivo Analgesic Activity. J Med Chem. 2018 Jul 10. doi: 10.1021/acs.jmedchem.8b00545.

产品描述

TRPM8 antagonist 2 (TRPM8 Antagonist) is a potent and selective antagonist of TRPM8 with IC50 of 0.2 nM that can be used for the pharmacological treatment of neuropathic pain syndromes.

[1] Alessia Bertamino, et al. J Med Chem. 2018 Jul 26;61(14):6140-6152.

Chemical Properties

Cas No. 259674-19-6 SDF
Canonical SMILES O=C([C@@H](N(CC1=CC=CC=C1)CC2=CC=CC=C2)CC3=CNC4=CC=CC=C43)OC
分子式 C26H26N2O2 分子量 398.5
溶解度 DMSO : 160 mg/mL (401.51 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.5094 mL 12.5471 mL 25.0941 mL
5 mM 0.5019 mL 2.5094 mL 5.0188 mL
10 mM 0.2509 mL 1.2547 mL 2.5094 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Recent Progress in TRPM8 Modulation: An Update

The transient receptor potential melastatin subtype 8 (TRPM8) is a nonselective, multimodal ion channel, activated by low temperatures (<28 °C), pressure, and cooling compounds (menthol, icilin). Experimental evidences indicated a role of TRPM8 in cold thermal transduction, different life-threatening tumors, and other pathologies, including migraine, urinary tract dysfunction, dry eye disease, and obesity. Hence, the modulation of the TRPM8 channel could be essential in order to understand its implications in these pathologies and for therapeutic intervention. This short review will cover recent progress on the TRPM8 agonists and antagonists, describing newly reported chemotypes, and their application in the pharmacological characterization of TRPM8 in health and disease. The recently described structures of the TRPM8 channel alone or complexed with known agonists and PIP2 are also discussed.

Structural insights into TRPM8 inhibition and desensitization

The transient receptor potential melastatin 8 (TRPM8) ion channel is the primary detector of environmental cold and an important target for treating pathological cold hypersensitivity. Here, we present cryo-electron microscopy structures of TRPM8 in ligand-free, antagonist-bound, or calcium-bound forms, revealing how robust conformational changes give rise to two nonconducting states, closed and desensitized. We describe a malleable ligand-binding pocket that accommodates drugs of diverse chemical structures, and we delineate the ion permeation pathway, including the contribution of lipids to pore architecture. Furthermore, we show that direct calcium binding mediates stimulus-evoked desensitization, clarifying this important mechanism of sensory adaptation. We observe large rearrangements within the S4-S5 linker that reposition the S1-S4 and pore domains relative to the TRP helix, leading us to propose a distinct model for modulation of TRPM8 and possibly other TRP channels.

TRPM8 Channels: Advances in Structural Studies and Pharmacological Modulation

The transient receptor potential melastatin subtype 8 (TRPM8) is a cold sensor in humans, activated by low temperatures (>10, <28 °C), but also a polymodal ion channel, stimulated by voltage, pressure, cooling compounds (menthol, icilin), and hyperosmolarity. An increased number of experimental results indicate the implication of TRPM8 channels in cold thermal transduction and pain detection, transmission, and maintenance in different tissues and organs. These channels also have a repercussion on different kinds of life-threatening tumors and other pathologies, which include urinary and respiratory tract dysfunctions, dry eye disease, and obesity. This compendium firstly covers newly described papers on the expression of TRPM8 channels and their correlation with pathological states. An overview on the structural knowledge, after cryo-electron microscopy success in solving different TRPM8 structures, as well as some insights obtained from mutagenesis studies, will follow. Most recently described families of TRPM8 modulators are also covered, along with a section of molecules that have reached clinical trials. To finalize, authors provide an outline of the potential prospects in the TRPM8 field.

β-Lactam TRPM8 Antagonist RGM8-51 Displays Antinociceptive Activity in Different Animal Models

Transient receptor potential melastatin subtype 8 (TRPM8) is a cation channel extensively expressed in sensory neurons and implicated in different painful states. However, the effectiveness of TRPM8 modulators for pain relief is still a matter of discussion, since structurally diverse modulators lead to different results, depending on the animal pain model. In this work, we described the antinociceptive activity of a β-lactam derivative, RGM8-51, showing good TRPM8 antagonist activity, and selectivity against related thermoTRP channels and other pain-mediating receptors. In primary cultures of rat dorsal root ganglion (DRG) neurons, RGM8-51 potently reduced menthol-evoked neuronal firing without affecting the major ion conductances responsible for action potential generation. This compound has in vivo antinociceptive activity in response to cold, in a mouse model of oxaliplatin-induced peripheral neuropathy. In addition, it reduces cold, mechanical and heat hypersensitivity in a rat model of neuropathic pain arising after chronic constriction of the sciatic nerve. Furthermore, RGM8-51 exhibits mechanical hypersensitivity-relieving activity, in a mouse model of NTG-induced hyperesthesia. Taken together, these preclinical results substantiate that this TRPM8 antagonist is a promising pharmacological tool to study TRPM8-related diseases.

TRPM8 deficiency attenuates liver fibrosis through S100A9-HNF4α signaling

Background: Liver fibrosis represent a major global health care burden. Data emerging from recent advances suggest TRPM8, a member of the transient receptor potential (TRP) family of ion channels, plays an essential role in various chronic inflammatory diseases. However, its role in liver fibrosis remains unknown. Herein, we assessed the potential effect of TRPM8 in liver fibrosis.
Methods: The effect of TRPM8 was evaluated using specimens obtained from classic murine models of liver fibrosis, namely wild-type (WT) and TRPM8-/- (KO) fibrotic mice after carbon tetrachloride (CCl4) or bile duct ligation (BDL) treatment. The role of TRPM8 was systematically evaluated using specimens obtained from the aforementioned animal models after various in vivo and in vitro experiments.
Results: Clinicopathological analysis showed that TRPM8 expression was upregulated in tissue samples from cirrhosis patients and fibrotic mice. TRPM8 deficiency not only attenuated inflammation and fibrosis progression in mice but also helped to alleviate symptoms of cholangiopathies. Moreover, reduction in S100A9 and increase in HNF4α expressions were observed in liver of CCl4- and BDL- treated TRPM8-/- mice. A strong regulatory linkage between S100A9 and HNF4α was also noticed in L02 cells that underwent siRNA-mediated S100A9 knockdown and S100A9 overexpressing plasmid transfection. Lastly, the alleviative effect of a selective TRPM8 antagonist was confirmed in vivo.
Conclusions: These findings suggest TRPM8 deficiency may exert protective effects against inflammation, cholangiopathies, and fibrosis through S100A9-HNF4α signaling. M8-B might be a promising therapeutic candidate for liver fibrosis.