Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> Potassium Channel>>TRAM-34

TRAM-34 Sale

目录号 : GC13040

An IKCa1/KCa3.1 channel blocker

TRAM-34 Chemical Structure

Cas No.:289905-88-0

规格 价格 库存 购买数量
5mg
¥357.00
现货
25mg
¥1,344.00
现货
100mg
¥3,024.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Kinase experiment:

MCF-7 cell protein (250 µg) is incubated at room temperature for 2 h in TEDG buffer in the presence of 0.1 nM [2,4,6,7,16,17-3H(N)]-oestradiol ([3H]-E2) (110 Ci/mmol) in a total final volume of 500 µL. Non-specific binding is assessed in the presence of a 100-fold excess of non-radioactive E2. TRAM-34 and E2 standards are diluted in phenol red-free 5% DCC-FBS MEM containing supplements before being added to the cytosolic protein. A vehicle control comprised of 5% DCC-FBS MEM containing supplements with 0.7% DMSO. To separate ER-bound [3H]-E2 from unbound [3H]-E2, 250 µL of hydroxylapatite (HAP, 60% in TEDG buffer) is added, the mixture is vortexed every 5 min over 15 min and centrifuged at 1000×g for 10 min. The HAP-[3H]-E2-ER complex is washed with TEDG buffer, centrifuged and the wash step repeated. To elute [3H]-E2 from the HAP-[3H]-E2-ER complex, 500 µL of 100% ethanol is added and the mixture then incubated for 15 min and centrifuged at 1034×g for 10 min. The separated [3H]-E2 is removed and added to 2 mL of scintillation fluid. Radioactivity is quantified using a Beckman LS 5000TA scintillation counter. Competition of [3H]-E2 with TRAM-34 is assayed in quadruplicate on four independent protein extractions. An apparent dissociation constant of 0.135±0.034 nM (n=3) and a maximum binding capacity of 48.3±5.4 fmol/mg (n=3) are determined by Scatchard analysis[2].

Animal experiment:

Mice[1] Five CF-1BR mice (17-19 g) are injected intravenously with a single 1.0-ml dose of 0.5 mg/kg TRAM-34 (in mammalian Ringer solution with 1% ethanol and 2.5% BSA). Five control mice are injected with an equal volume of the vehicle. Mice are observed for adverse effects immediately after dosing, at 4 h after injection and daily for 7 days. Rats[3] Adult male Wistar rats weighing 160 to 180 g are used. Rats receive TRAM-34 at 10 mg/kg, 40 mg/kg or vehicle (Miglyol 812 neutral oil at 1 μL/g) twice daily intraperitoneally for 7 days starting 12 hours after reperfusion. Neurological deficits are scored according to a 4-score test and a tactile and proprioceptive limb-placing test as follows: (1) 4-score test (higher score for more severe neurological deficits): 0=no apparent deficit; 1=contralateral forelimb is consistently flexed during suspension by holding the tail; 2=decreasing grip ability on the contralateral forelimb while tail pulled; 3=spontaneous movement in all directions but circling to contralateral side when pulled by the tail; 4=spontaneous contralateral circling or depressed level of consciousness. (2) 14-score limb-placing test (lower score for more severe neurological deficits): proprioception, forward extension, lateral abduction, and adduction are tested with vision or tactile stimuli. For visual limb placing, rats are held and slowly moved forward or lateral toward the top of a table. Normal rats placed both forepaws on the tabletop. Tactile forward and lateral limb placing are tested by lightly contacting the table edge with the dorsal or lateral surface of a rat's paw while avoiding whisker contact and covering the eyes to avoid vision.

References:

[1]. Wulff H, et al. Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8151-6.
[2]. Roy JW, et al. The intermediate conductance Ca2+-activated K+ channel inhibitor TRAM-34 stimulates proliferation of breast cancer cells via activation of oestrogen receptors. Br J Pharmacol. 2010 Feb 1;159(3):650-8.
[3]. Chen YJ, et al. The KCa3.1 blocker TRAM-34 reduces infarction and neurological deficit in a rat model of ischemia/reperfusion stroke. J Cereb Blood Flow Metab. 2011 Dec;31(12):2363-74.

产品描述

TRAM-34 is a highly selective inhibitor of KCa3.1 channel with IC50 value of 20 nM [1].
The Ca (2+)-binding protein calmodulin (CaM) confers Ca (2+) sensitivity to KCa3.1 of KCa3.1. On the basis of crystal structure obtained for the C-terminal region of the rat KCa2.2 channel (rSK2) with CaM that the binding of Ca (2+) to the CaM N-lobe results in CaM interlocking the C-terminal regions of two adjacent KCa3.1 subunits, leading to the formation of a dimeric structure. It is reported that many factors can increase KCa3.1, like balloon injury [2].
TRAM-34 is a KCa3.1 channel inhibitor and plays an important role in many diseases. When tested with human T cells, TRAM-34 treatment inhibited cells mobility and migration via blocking KCa3.1 channel [3]. In coronary smooth muscle cells isolated by laser capture microdissection, delivery of TRAM-34 via balloon catheter significantly blocked the KCa3.1 increase [4]. When tested with COS-7 cells, TRAM-34 inhibited KCa3.1 channel with Kd of 20 ± 3 nM and a Hill coefficient of 1.2 with 1 μM calcium in the pipette [1].
In male Wistar rat model of ischemic stroke, administration of TRAM-34 intraperitoneal (10 or 40 mg/kg, twice daily) for 7 days reduced infarction, neuronal death, microglia activation and neurological deficit via blocking KCa3.1 channel [5].
References:
[1].Wulff, H., et al., Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci U S A, 2000. 97(14): p. 8151-6.
[2].Kaushal, V., et al., The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. J Neurosci, 2007. 27(1): p. 234-44.
[3].Chimote, A.A., et al., Selective inhibition of KCa3.1 channels mediates adenosine regulation of the motility of human T cells. J Immunol, 2013. 191(12): p. 6273-80.
[4].Tharp, D.L., et al., Local delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-induced coronary smooth muscle phenotypic modulation and limits stenosis. Arterioscler Thromb Vasc Biol, 2008. 28(6): p. 1084-9.
[5].Chen, Y.J., et al., The KCa3.1 blocker TRAM-34 reduces infarction and neurological deficit in a rat model of ischemia/reperfusion stroke. J Cereb Blood Flow Metab, 2011. 31(12): p. 2363-74.

Chemical Properties

Cas No. 289905-88-0 SDF
化学名 1-[(2-chlorophenyl)-diphenylmethyl]pyrazole
Canonical SMILES C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3Cl)N4C=CC=N4
分子式 C22H17ClN2 分子量 344.84
溶解度 ≥ 17.25mg/mL in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.8999 mL 14.4995 mL 28.999 mL
5 mM 0.58 mL 2.8999 mL 5.7998 mL
10 mM 0.29 mL 1.4499 mL 2.8999 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置