Home>>Signaling Pathways>> Chromatin/Epigenetics>> Histone Methyltransferase>>TP-064

TP-064 Sale

目录号 : GC41263

A potent inhibitor of PRMT4

TP-064 Chemical Structure

Cas No.:2080306-20-1

规格 价格 库存 购买数量
1mg
¥215.00
现货
5mg
¥810.00
现货
10mg
¥1,350.00
现货
25mg
¥2,422.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

TP-064 is a potent inhibitor of protein arginine methyltransferase 4 (PRMT4; IC50 in vitro. For more information on TP-064 please visit the Structural Genomics Consortium (SGC). The negative control, TP-064N, for TP-064 is also available exclusively through the SGC. You can submit a request to receive the negative control here.

Chemical Properties

Cas No. 2080306-20-1 SDF
化学名 N-methyl-N-[[2-[1-[2-(methylamino)ethyl]-4-piperidinyl]-4-pyridinyl]methyl]-3-phenoxy-benzamide
Canonical SMILES O=C(N(CC1=CC(C2CCN(CCNC)CC2)=NC=C1)C)C3=CC=CC(OC4=CC=CC=C4)=C3
分子式 C28H34N4O2 分子量 458.6
溶解度 30mg/mL in ethanol, or in DMSO, or in DMF 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1805 mL 10.9027 mL 21.8055 mL
5 mM 0.4361 mL 2.1805 mL 4.3611 mL
10 mM 0.2181 mL 1.0903 mL 2.1805 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

PRMT4 inhibitor TP-064 inhibits the pro-inflammatory macrophage lipopolysaccharide response in vitro and ex vivo and induces peritonitis-associated neutrophilia in vivo

Biochim Biophys Acta Mol Basis Dis 2021 Nov 1;1867(11):166212.PMID:34311083DOI:10.1016/j.bbadis.2021.166212.

Previous in vitro studies have shown that protein arginine N-methyltransferase 4 (PRMT4) is a co-activator for an array of cellular activities, including NF-κB-regulated pro-inflammatory responses. Here we investigated the effect of PRMT4 inhibitor TP-064 treatment on macrophage inflammation in vitro and in vivo. Exposure of RAW 264.7 monocyte/macrophages to TP-064 was associated with a significant decrease in the production of pro-inflammatory cytokines upon a lipopolysaccharide challenge. Similarly, thioglycollate-elicited peritoneal cells isolated from wildtype mice treated with TP-064 showed lowered mRNA expression levels and cytokine production of pro-inflammatory mediators interleukin (IL)-1β, IL-6, IL-12p40, and tumor necrosis factor-α in response to lipopolysaccharide exposure. However, TP-064-treated mice exhibited an ongoing pro-inflammatory peritonitis after 5 days of thioglycollate exposure, as evident from a shift in the peritoneal macrophage polarization state from an anti-inflammatory LY6ClowCD206hi to a pro-inflammatory LY6ChiCD206low phenotype. In addition, TP-064-treated mice accumulated (activated) neutrophils within the peritoneum as well as in the blood (7-fold higher; P < 0.001) and major organs such as kidney and liver, without apparent tissue toxicity. TP-064 treatment downregulated hepatic mRNA expression levels of the PRMT4 target genes glucose-6-phosphatase catalytic subunit (-50%, P < 0.05) and the cyclin-dependent kinases 2 (-50%, P < 0.05) and 4 (-30%, P < 0.05), suggesting a direct transcriptional effect of PRMT4 also in hepatocytes. In conclusion, we have shown that the PRMT4 inhibitor TP-064 induces peritonitis-associated neutrophilia in vivo and inhibits the pro-inflammatory macrophage lipopolysaccharide response in vitro and ex vivo. Our findings suggest that TP-064 can possibly be applied as therapy in NF-κB-based inflammatory diseases.

Histone arginine methyltransferase CARM1 selective inhibitor TP-064 induces apoptosis in endometrial cancer

Biochem Biophys Res Commun 2022 Apr 23;601:123-128.PMID:35245741DOI:10.1016/j.bbrc.2022.02.086.

Histone modification is the key epigenetic mechanism that regulates gene expression. Coactivator-associated arginine methyltransferase 1 (CARM1) is an arginine methyltransferase that catalyzes dimethylation of histone H3 (H3R17) at arginine 17. Lately, it has been suggested that CARM1 is associated with human carcinogenesis, and the CARM1-selective inhibitor, TP-064, has been shown to be a potential therapeutic agent for multiple myeloma. However, the physiological significance of CARM1 in endometrial cancer remains unclear. Therefore, we aimed to explore the role of CARM1 and the effect of TP-064 in endometrial cancer. To this end, we analyzed CARM1 expression in endometrial cancer using quantitative real-time polymerase chain reaction and examined the antitumor mechanism with CARM1 knockdown endometrial cancer cells. Moreover, we evaluated the therapeutic capability of TP-064 in endometrial cancer cells. CARM1 was remarkably overexpressed in 52 endometrial cancer tissues compared to normal endometrial tissues. The growth of CARM1 knockdown endometrial cancer cells was suppressed and CARM1 knockdown induced apoptosis. TP-064 also inhibited endometrial cancer cell growth and declined the number of endometrial cancer cell colonies. These data suggest that CARM1 may be a powerful therapeutic target for endometrial cancer.

PRMT4 inhibitor TP-064 impacts both inflammatory and metabolic processes without changing the susceptibility for early atherosclerotic lesions in male apolipoprotein E knockout mice

Atherosclerosis 2021 Dec;338:23-29.PMID:34785428DOI:10.1016/j.atherosclerosis.2021.11.001.

Background and aims: Atherosclerotic cardiovascular disease is a metabolic and inflammatory disorder. In vitro studies have suggested that protein arginine methyltransferase 4 (PRMT4) may act as a transcriptional coactivator to modulate inflammatory and metabolic processes. Here we investigated the potential anti-atherogenic effect of PRMT4 inhibitor TP-064 in vivo. Methods: Male apolipoprotein E knockout mice fed a high cholesterol/high fat Western-type diet were intraperitoneally injected three times a week with 2.5 mg/kg (low dose) or 10 mg/kg (high dose) TP-064 or with DMSO control. Results: TP-064 induced a dose-dependent decrease in lipopolysaccharide-induced ex vivo blood monocyte Tnfα secretion (p < 0.05 for trend) in the context of unchanged blood monocyte concentrations and neutrophilia induction (p < 0.01 for trend). A dose-dependent decrease in gonadal white adipose tissue expression levels of PPARγ target genes was detected, which translated into a reduced body weight gain after high dose TP-064 treatment (p < 0.05). TP-064 treatment also dose-dependently downregulated gene expression of the glycogen metabolism related protein G6pc in the liver (p < 0.001 for trend). In addition, a trend towards lower plasma insulin and higher blood glucose levels was observed, which was paralleled by a reduction in hepatic mRNA expression levels of the insulin-responsive genes Fasn (-55%; p < 0.001) and Gck (-47%; p < 0.001) in high dose-treated mice. Plasma triglyceride levels were reduced by high dose TP-064 treatment (-30%; p < 0.05). However, no change was observed in the size or composition of aortic root atherosclerotic lesions. Conclusions: The PRMT4 inhibitor TP-064 impacts both inflammatory and metabolic processes without changing atherosclerosis susceptibility of male apolipoprotein E knockout mice.

TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma

Oncotarget 2018 Apr 6;9(26):18480-18493.PMID:29719619DOI:10.18632/oncotarget.24883.

Protein arginine methyltransferase (PRMT) 4 (also known as coactivator-associated arginine methyltransferase 1; CARM1) is involved in a variety of biological processes and is considered as a candidate oncogene owing to its overexpression in several types of cancer. Selective PRMT4 inhibitors are useful tools for clarifying the molecular events regulated by PRMT4 and for validating PRMT4 as a therapeutic target. Here, we report the discovery of TP-064, a potent, selective, and cell-active chemical probe of human PRMT4 and its co-crystal structure with PRMT4. TP-064 inhibited the methyltransferase activity of PRMT4 with high potency (half-maximal inhibitory concentration, IC50 < 10 nM) and selectivity over other PRMT family proteins, and reduced arginine dimethylation of the PRMT4 substrates BRG1-associated factor 155 (BAF155; IC50= 340 ± 30 nM) and Mediator complex subunit 12 (MED12; IC50 = 43 ± 10 nM). TP-064 treatment inhibited the proliferation of a subset of multiple myeloma cell lines, with affected cells arrested in G1 phase of the cell cycle. TP-064 and its negative control (TP-064N) will be valuable tools to further investigate the biology of PRMT4 and the therapeutic potential of PRMT4 inhibition.