Home>>Lipids>> Cyclooxygenase>>tetranor-Prostaglandin E1

tetranor-Prostaglandin E1 Sale

(Synonyms: 7α,11-Dihydroxy-5-ketotetranorprost-9-enoic Acid, Tetranor PGE1, Tetranorprostaglandin E1) 目录号 : GC48158

A metabolite of PGE1 and PGE2

tetranor-Prostaglandin E1 Chemical Structure

Cas No.:23923-84-4

规格 价格 库存 购买数量
25 μg
¥2,312.00
现货
50 μg
¥4,403.00
现货
100 μg
¥8,325.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

tetranor-Prostaglandin E1 (tetranor-PGE1) is metabolite of PGE1 and PGE2 that is formed by β-oxidation.1,2

1.Oates, J.A., Sweetman, B.J., GrÉene, K., et al.Identification and assay of tetranor-prostaglandin E1 in human urineAnal. Biochem. 74(2)546-559(1976) 2.Kimbrough, J.R., Jana, S., Kim, K., et al.Synthesis of tetranor-PGE1: A urinary metabolite of prostaglandins E1 and E2Tetrahedron Lett.61(22)151922(2020)

Chemical Properties

Cas No. 23923-84-4 SDF
别名 7α,11-Dihydroxy-5-ketotetranorprost-9-enoic Acid, Tetranor PGE1, Tetranorprostaglandin E1
Canonical SMILES O=C1C[C@@H](O)[C@H](/C=C/[C@@H](O)CCCCC)[C@H]1CCC(O)=O
分子式 C16H26O5 分子量 298.4
溶解度 DMF: 100 mg/ml,DMSO: 100 mg/ml,Ethanol: 100 mg/ml,PBS (pH 7.2): 5 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.3512 mL 16.756 mL 33.5121 mL
5 mM 0.6702 mL 3.3512 mL 6.7024 mL
10 mM 0.3351 mL 1.6756 mL 3.3512 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The urinary excretion of prostaglandins E and their corresponding tetranor metabolites by rats fed a diet rich in eicosapentaenoate

Biochim Biophys Acta 1988 Feb 4;958(2):289-99.PMID:2827784DOI:10.1016/0005-2760(88)90187-7.

An HPLC method was developed to determine simultaneously in a single analysis prostaglandin E2, prostaglandin E3, tetranor-Prostaglandin E1 and delta 17-tetranor-prostaglandin E1 in rat urine. As internal standard omega-nor-prostaglandin E2 was added to the samples at the beginning of the analysis. The assay was applied in feeding experiments in which rats were fed diets with mixtures of (n-6) and (n-3) fatty acids (linoleate, arachidonate, alpha-linolenate and eicosapentaenoate). The level of urinary prostaglandin E2 was not very much affected by the diet and prostaglandin E3 could never be detected in significant amounts. These primary prostaglandins are assumed to reflect prostaglandin biosynthesis in the kidney medulla. tetranor-Prostaglandin E1 is a characteristic urinary metabolite of prostaglandin E2 in the rat; its level increased after feeding arachidonic acid. delta 17-Tetranor-prostaglandin E1 became a major metabolite when the rats received eicosapentaenoic acid. However, we found that the ratio of urinary tetranor-Prostaglandin E1/delta 17-tetranor-prostaglandin E1 is not a very reliable measure of the ratio of prostaglandin E2/prostaglandin E3 formed in the body, because prostaglandin E3 is converted to a much greater extent into delta 17-tetranor-prostaglandin E1 than is prostaglandin E2 into tetranor-Prostaglandin E1. As a matter of fact, incubations of tissue homogenates of rats resulted always in predominant formation of prostaglandins of the 2-series, even after high eicosapentaenoate diets. We conclude, in agreement with work carried out earlier, that biosynthetic pathways leading to prostaglandins of the 3-series are of minor importance.