Home>>Signaling Pathways>> Antibody-drug Conjugate/ADC Related>> Drug-Linker Conjugates for ADC>>sulfo-SPDB-DM4

sulfo-SPDB-DM4 Sale

目录号 : GC33040

sulfo-SPDB-DM4是ADC的一部分,由maytansinebasedpayload(DM4)与sulfo-SPDB连接而成。

sulfo-SPDB-DM4 Chemical Structure

Cas No.:1626359-59-8

规格 价格 库存 购买数量
1mg
¥8,987.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

sulfo-SPDB-DM4 is a drug-linker conjugate for ADC by using the maytansinebased payload (DM4) via the sulfo-SPDB linker.

Chemical Properties

Cas No. 1626359-59-8 SDF
Canonical SMILES C[C@]1([C@@](CC(N(C(C=C2C=C3OC)=C3Cl)C)=O)([H])OC([C@H](C)N(C)C(CCC(C)(C)SSCCC(S(=O)(O)=O)C(ON(C4=O)C(CC4)=O)=O)=O)=O)[C@H]([C@@H]([C@](OC5=O)([H])C[C@]([C@](/C=C/C=C(C)/C2)([H])OC)(N5)O)C)O1
分子式 C46H63ClN4O17S3 分子量 1075.66
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.9297 mL 4.6483 mL 9.2966 mL
5 mM 0.1859 mL 0.9297 mL 1.8593 mL
10 mM 0.093 mL 0.4648 mL 0.9297 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Sensitive ELISA Method for the Measurement of Catabolites of Antibody-Drug Conjugates (ADCs) in Target Cancer Cells

Mol Pharm 2015 Jun 1;12(6):1752-61.PMID:25738394DOI:10.1021/acs.molpharmaceut.5b00028.

A new, sensitive ELISA method has been developed which measures catabolites in cells and media upon processing of antibody-drug conjugates (ADCs) by target cancer cells. This ELISA method, exemplified for maytansinoid ADCs, uses competitive inhibition by a maytansinoid analyte of the binding of biotinylated antimaytansine antibody to an immobilized BSA-maytansinoid conjugate. Synthetic standards of several maytansinoid catabolites derived from ADCs with different linkers were tested and showed similar inhibition curves, with an EC50 of about 0.1 nM (0.03 pmol in an assay volume of 0.25 mL). This high sensitivity allowed quantification of catabolites from a methanolic cell extract and from the medium, generated from an ADC in 1 day using only about 1 million cells. The processing of anti-EpCAM and anti-CanAg ADCs with noncleavable linker (SMCC-DM1), disulfide linker (SPDB-DM4), and charged sulfonate-bearing disulfide linker (sulfo-SPDB-DM4), each containing an average of about four maytansinoid molecules per antibody, were compared in colon cancer cell lines (COLO 205 and HT-29). An 8-10-fold higher total level of catabolite was observed for anti-CanAg ADCs than for anti-EpCAM ADCs upon processing by COLO 205 cells, consistent with a higher cell-surface expression of CanAg. In a multidrug resistant HCT-15 colon cancer cell line, the anti-EpCAM-SPDB-DM4 linker conjugate was not cytotoxic and showed a significantly lower level of catabolite within cells compared to that in medium, presumably due to Pgp-mediated efflux of the nonpolar DM4 catabolite. In contrast, sulfo-SPDB-DM4 and SMCC-DM1 linker conjugates were cytotoxic, which correlated with higher amounts of catabolites found within the HCT-15 cells relative to amounts in medium. In a nonmultidrug resistant HT-29 cell line, the anti-EpCAM-SPDB-DM4 linker conjugate was cytotoxic, with most of the catabolite found in cells and little in the medium. In conclusion, this highly sensitive ELISA method for measurement of ADC catabolite is convenient for screening multiple ADC parameters such as linkers and antibodies in a number of cell lines, does not require concentration of sample or extraction of media, and is complementary to other reported methods such as radiolabeling of ADCs or mass spectrometry.

MORAb-202, an Antibody-Drug Conjugate Utilizing Humanized Anti-human FRα Farletuzumab and the Microtubule-targeting Agent Eribulin, has Potent Antitumor Activity

Mol Cancer Ther 2018 Dec;17(12):2665-2675.PMID:30262588DOI:10.1158/1535-7163.MCT-17-1215.

Microtubule-targeting agents (MTA) have been investigated for many years as payloads for antibody-drug conjugates (ADC). In many cases, these ADCs have shown limited benefits due to lack of efficacy or significant toxicity, which has spurred continued investigation into novel MTA payloads for next-generation ADCs. In this study, we have developed ADCs using the MTA eribulin, a derivative of the macrocyclic polyether natural product halichondrin B, as a payload. Eribulin ADCs demonstrated in vitro potency and specificity using various linkers and two different conjugation approaches. MORAb-202 is an investigational agent that consists of the humanized anti-human folate receptor alpha (FRA) antibody farletuzumab conjugated via reduced interchain disulfide bonds to maleimido-PEG2-valine-citrulline-p-aminobenzylcarbamyl-eribulin at a drug-to-antibody ratio of 4.0. MORAb-202 displayed preferable biophysical properties and broad potency across a number of FRA-positive tumor cell lines as well as demonstrated improved specificity in vitro compared with farletuzumab conjugated with a number of other MTA payloads, including MMAE, MMAF, and the reducible maytansine linker-payload sulfo-SPDB-DM4. A single-dose administration of MORAb-202 in FRA-positive human tumor cell line xenograft and patient-derived tumor xenograft models elicited a robust and durable antitumor response. These data support further investigation of MORAb-202 as a potential new treatment modality for FRA-positive cancers, using the novel MTA eribulin as a payload.