Home>>Signaling Pathways>> Others>> Others>>SR10067

SR10067

目录号 : GC34810

SR10067是有效的、选择性的、能透过大脑的Rev-Erbα/β的激动剂,其对Rev-Erbβ和Rev-Erbα的IC50值分别为160nM和170nM。SR10067具有抗焦虑活性。

SR10067 Chemical Structure

Cas No.:1380548-02-6

规格 价格 库存 购买数量
5mg
¥2,520.00
现货
10mg
¥4,050.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

SR10067 is a potent, selective and brain penetrant Rev-Erbα/β agonist, with IC50 values are 160 and 170 nM for Rev-Erbβ and Rev-Erbα, respectively. SR10067 has anxiolytic activity[1][2]. IC50: 160 nM (Rev-Erbβ), 170 nM (Rev-Erbα)[1].

[1]. Banerjee S, et al. Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour. Nat Commun. 2014 Dec 23;5:5759. doi: 10.1038/ncomms6759. [2]. Thevis M, et al. Emerging drugs affecting skeletal muscle function and mitochondrial biogenesis - Potential implications for sports drug testing programs. Rapid Commun Mass Spectrom. 2016 Mar 15;30(5):635-51.

Chemical Properties

Cas No. 1380548-02-6 SDF
Canonical SMILES CC(OC1=CC=C(OCC2CC3=CC=CC=C3CN2C(C4=CC=CC5=C4C=CC=C5)=O)C=C1)(C)C
分子式 C31H31NO3 分子量 465.58
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1479 mL 10.7393 mL 21.4786 mL
5 mM 0.4296 mL 2.1479 mL 4.2957 mL
10 mM 0.2148 mL 1.0739 mL 2.1479 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Emerging drugs affecting skeletal muscle function and mitochondrial biogenesis - Potential implications for sports drug testing programs

Rapid Commun Mass Spectrom 2016 Mar 15;30(5):635-51.PMID:26842585DOI:10.1002/rcm.7470

Rationale: A plethora of compounds potentially leading to drug candidates that affect skeletal muscle function and, more specifically, mitochondrial biogenesis, has been under (pre)clinical investigation for rare as well as more common diseases. Some of these compounds could be the object of misuse by athletes aiming at artificial and/or illicit and drug-facilitated performance enhancement, necessitating preventive and proactive anti-doping measures. Methods: Early warnings and the continuous retrieval and dissemination of information are crucial for sports drug testing laboratories as well as anti-doping authorities, as they assist in preparation of efficient doping control analytical strategies for potential future threats arising from new therapeutic developments. Scientific literature represents the main source of information, which yielded the herein discussed substances and therapeutic targets, which might become relevant for doping controls in the future. Where available, mass spectrometric data are presented, supporting the development of analytical strategies and characterization of compounds possibly identified in human sports drug testing samples. Results & conclusions: Focusing on skeletal muscle and mitochondrial biogenesis, numerous substances exhibiting agonistic or antagonistic actions on different cellular 'control centers' resulting in increased skeletal muscle mass, enhanced performance (as determined with laboratory animal models), and/or elevated amounts of mitochondria have been described. Substances of interest include agonists for REV-ERBα (e.g. SR9009, SR9011, SR10067, GSK4112), sirtuin 1 (e.g. SRT1720, SRT2104), adenosine monophosphate-activated protein kinase (AMPK, e.g. AICAR), peroxisome proliferator-activated receptor (PPAR)δ (e.g. GW1516, GW0742, L165041), and inhibitory/antagonistic agents targeting the methionine-folate cycle (MOTS-c), the general control non-derepressible 5 (GCN5) acetyl transferase (e.g. CPTH2, MB-3), myostatin (e.g. MYO-029), the myostatin receptor (bimagrumab), and myostatin receptor ligands (e.g. sotatercept, ACE-031). In addition, potentially relevant drug targets were identified, e.g. with the sarcoplasmic transmembrane peptide myoregulin and the nuclear receptor corepressor 1 (NCOR-1). The antagonism of these has shown to result in substantially enhanced physical performance in animals, necessitating the monitoring of strategies such as RNA interference regarding these substances. Most drug candidates are of lower molecular mass and comprise non-natural compositions, facts which suggest approaches for their qualitative identification in doping control samples by mass spectrometry. Electrospray ionization/collision-induced dissociation mass spectra of representatives of the aforementioned substances and selected in vitro derived phase-I metabolites support this assumption, and test methods for a subset of these have been recently established. Expanding the knowledge on analytical data will further facilitate the identification of such analytes and related compounds in confiscated material as well as sports drug testing specimens.