Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> Sodium Channel>>Sodium ionophore III (ETH2120)

Sodium ionophore III (ETH2120) Sale

(Synonyms: 钠离子载体,III,ETH2120) 目录号 : GC31279

Sodium ionophore III (ETH2120) (ETH2120) 是一种 Na+ 离子载体,适用于测定血液、血浆、血清中钠的活性。

Sodium ionophore III (ETH2120) Chemical Structure

Cas No.:81686-22-8

规格 价格 库存 购买数量
10mg
¥803.00
现货
50mg
¥2,321.00
现货
100mg
¥4,373.00
现货
200mg
¥7,229.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Cell experiment [1]:

Cell lines

Acetobacter xylostella cells

Preparation Method

After the cell suspensions were gassed with H2 for 30 min at 30 ¡ムin a shaking water bath at 180 rpm, caffeate was added as indicated in the figure legends from an 0.1 M stock solution. The ionophores N,N, Sodium ionophore III (ETH2120), tetrachlorosalicylanilide (TCS), 2-(3,5-di-tert-butyl-4-hydroxy-benzylidene)-malononitrile (SF6487), and the ATPase inhibitor N,N -dicyclohexylcarbodiimide (DCCD) were added as ethanolic solutions as indicated in the figure legends

Dosage form

20 µM ETH2120 for 24h

Applications

Preincubation of the cells with the Na+ ionophore sodium ionophore III not only stimulated caffeate reduction(by Sodium ionophore III (ETH2120)), but completely abolished ATP synthesis. Addition of sodium ionophore III to cells in the steady state of caffeate reduction immediately dissipated the intracellular ATP level[1].

References:

[1]: Imkamp F, M¨¹ller V. Chemiosmotic energy conservation with Na(+) as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii. J Bacteriol. 2002 Apr;184(7):1947-51. doi: 10.1128/JB.184.7.1947-1951.2002. PMID: 11889102; PMCID: PMC134933.

产品描述

Sodium ionophore III (ETH2120) is a Na+ ionophore.

Cell suspensions of Acetobacterium woodii prepared from cultures grown on fructose plus caffeate catalyzed caffeate reduction with electrons derived from molecular hydrogen. The sodium ionophore Sodium ionophore III (ETH2120), stimulated hydrogen-dependent caffeate reduction by 280%, indicating that caffeate reduction is coupled to the buildup of a membrane potential generated by primary Na(+) extrusion[1]. Rnf is a membrane protein complex, The addition of the protonophore TCS strongly inhibited lactate-sulfate dependent growth whereas the sodium ionophore Sodium ionophore III (ETH2120) had no effect, indicating a role for the proton gradient during growth. [2]. In the considered nitrobenzene medium, the investigated Sodium ionophore III ligand is a very effective receptor for the Eu3+ and Am3+ cations[3].

The addition of the Na+-selective ionophore Sodium ionophore III (ETH2120) or the protonophore CCCP or the H+/cation-antiporter monensin revealed that an H+ gradient is used as primary energy conservation mechanism, which strengthens the exceptional position of C. aceticum as acetogenic bacterium showing an H+-dependent energy conservation mechanism as well as Na+-dependent growth[4].

References:
[1]: Imkamp F, Müller V. Chemiosmotic energy conservation with Na(+) as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii. J Bacteriol. 2002 Apr;184(7):1947-51. doi: 10.1128/JB.184.7.1947-1951.2002. PMID: 11889102; PMCID: PMC134933.
[2]: Wang L, Bradstock P, et,al. The role of Rnf in ion gradient formation in Desulfovibrio alaskensis. PeerJ. 2016 Apr 14;4:e1919. doi: 10.7717/peerj.1919. PMID: 27114876; PMCID: PMC4841214.
[3]: Makrlík, E., Kví?alová, M. et,al.Sodium Ionophore III as Very Effective Receptor for Trivalent Europium and Americium. J Solution Chem 45, 463-474 (2016). https://doi.org/10.1007/s10953-016-0447-0
[4]: Mayer A, Weuster-Botz D. Reaction engineering analysis of the autotrophic energy metabolism of Clostridium aceticum. FEMS Microbiol Lett. 2017 Dec 1;364(22). doi: 10.1093/femsle/fnx219. PMID: 29069379.

钠离子载体 III (ETH2120) 是一种 Na+ 离子载体。

从在果糖和咖啡酸盐上生长的培养物制备的 Acetobacterium woodii 的细胞悬浮液通过来自分子氢的电子催化咖啡酸盐还原。钠离子载体钠离子载体 III (ETH2120) 刺激氢依赖性咖啡酸减少 280%,表明咖啡酸减少与初级 Na(+) 挤出产生的膜电位的建立有关[1]。 Rnf 是一种膜蛋白复合物,质子载体 TCS 的添加强烈抑制乳酸-硫酸盐依赖性生长,而钠离子载体钠离子载体 III (ETH2120) 没有影响,表明质子梯度在生长过程中的作用。 [2]。在所考虑的硝基苯介质中,所研究的钠离子载体 III 配体是 Eu3+ 和 Am3+ 阳离子的非常有效的受体[3]

Na+- 选择性离子载体钠离子载体 III (ETH2120) 或质子载体 CCCP 或 H+/阳离子逆向转运蛋白莫能菌素的添加表明,H+ 梯度被用作主要的能量守恒机制,这加强了醋酸梭菌的特殊地位具有 H+- 依赖性能量守恒机制和 Na+- 依赖性生长的产乙酸菌[4].

Chemical Properties

Cas No. 81686-22-8 SDF
别名 钠离子载体,III,ETH2120
Canonical SMILES O=C(N(C1CCCCC1)C2CCCCC2)COC3=CC=CC=C3OCC(N(C4CCCCC4)C5CCCCC5)=O
分子式 C34H52N2O4 分子量 552.79
溶解度 DMSO : 1 mg/mL (1.81 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.809 mL 9.045 mL 18.0901 mL
5 mM 0.3618 mL 1.809 mL 3.618 mL
10 mM 0.1809 mL 0.9045 mL 1.809 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Reaction engineering analysis of the autotrophic energy metabolism of Clostridium aceticum

FEMS Microbiol Lett.2017 Dec 1;364(22).PMID: 29069379DOI: 10.1093/femsle/fnx219

Acetogenesis with CO2:H2 or CO via the reductive acetyl-CoA pathway does not provide any net ATP formation in homoacetogenic bacteria. Autotrophic energy conservation is coupled to the generation of chemiosmotic H+ or Na+ gradients across the cytoplasm membrane using either a ferredoxin:NAD+ oxidoreductase (Rnf), a ferredoxin:H+ oxidoreductase (Ech) or substrate-level phosphorylation via cytochromes. The first isolated acetogenic bacterium Clostridium aceticum shows both cytochromes and Rnf complex, putting it into an outstanding position. Autotrophic batch processes with continuous gas supply were performed in fully controlled stirred-tank bioreactors to elucidate energy metabolism of C. aceticum. Varying the initial Na+ concentration in the medium showed sodium-dependent growth of C. aceticum with a growth optimum between 60 and 90 mM Na+. The addition of the Na+-selective ionophore ETH2120 or the protonophore CCCP or the H+/cation-antiporter monensin revealed that an H+ gradient is used as primary energy conservation mechanism, which strengthens the exceptional position of C. aceticum as acetogenic bacterium showing an H+-dependent energy conservation mechanism as well as Na+-dependent growth.

The role of Rnf in ion gradient formation in Desulfovibrio alaskensis

PeerJ.2016 Apr 14;4:e1919.PMID: 27114876 DOI: 10.7717/peerj.1919

Rnf is a membrane protein complex that has been shown to be important in energy conservation. Here, Desulfovibrio alaskensis G20 and Rnf mutants of G20 were grown with different electron donor and acceptor combinations to determine the importance of Rnf in energy conservation and the type of ion gradient generated. The addition of the protonophore TCS strongly inhibited lactate-sulfate dependent growth whereas the sodium ionophore ETH2120 had no effect, indicating a role for the proton gradient during growth. Mutants in rnfA and rnfD were more sensitive to the protonophore at 5 µM than the parental strain, suggesting the importance of Rnf in the generation of a proton gradient. The electrical potential (ΔΨ), ΔpH and proton motive force were lower in the rnfA mutant than in the parental strain of D.alaskensis G20. These results provide evidence that the Rnf complex in D. alaskensis functions as a primary proton pump whose activity is important for growth.

Chemiosmotic energy conservation with Na(+) as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii

J Bacteriol.2002 Apr;184(7):1947-51PMID: 11889102DOI: 10.1128/JB.184.7.1947-1951.2002

Aims: Cell suspensions of Acetobacterium woodii prepared from cultures grown on fructose plus caffeate catalyzed caffeate reduction with electrons derived from molecular hydrogen. Hydrogen-dependent caffeate reduction was strictly Na(+) dependent with a K(m) for Na(+) of 0.38 mM; Li(+) could substitute for Na(+). The sodium ionophore ETH2120, but not protonophores, stimulated hydrogen-dependent caffeate reduction by 280%, indicating that caffeate reduction is coupled to the buildup of a membrane potential generated by primary Na(+) extrusion. Caffeate reduction was coupled to the synthesis of ATP, and again, ATP synthesis coupled to hydrogen-dependent caffeate reduction was strictly Na(+) dependent and abolished by ETH2120, but not by protonophores, indicating the involvement of a transmembrane Na(+) gradient in ATP synthesis. The ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) abolished ATP synthesis, and at the same time, hydrogen-dependent caffeate reduction was inhibited. This inhibition could be relieved by ETH2120. These experiments are fully compatible with a chemiosmotic mechanism of ATP synthesis with Na(+) as the coupling ion during hydrogen-dependent caffeate reduction by A. woodii.