Home>>Signaling Pathways>> Others>> SPHK>>SKI-I

SKI-I Sale

目录号 : GC66011

SKI-I 是一种有效和选择性的人鞘氨醇激酶 (SK) 抑制剂,抑制 ST-hSK 的 IC50 值为 1.2 μM。SKI-I 还抑制 hERK2 (IC50=11 μM)。SKI-I 在肿瘤细胞系中诱导细胞凋亡。

SKI-I Chemical Structure

Cas No.:306301-68-8

规格 价格 库存 购买数量
10mg
¥4,320.00
现货
25mg
¥8,550.00
现货
50mg
¥13,050.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

IC50: 1.2 μM (ST-hSK); 11 μM (hERK2)[1]

SKI-I is a potent and selective inhibitor of human sphingosine kinase (SK), with an IC50 of 1.2 μM for ST-hSK. SKI-I also inhibits hERK2 (IC50=11 μM). SKI-I induces apoptosis in tumor cell lines[1][2].

SKI-I (Compound I; 5 μg/mL) inhibits SK activity by 99%[1].
SKI-I (10 μM; 24 h) induces the apoptosis of T24 cells[1].

Chemical Properties

Cas No. 306301-68-8 SDF Download SDF
分子式 C25H18N4O2 分子量 406.44
溶解度 DMSO : 100 mg/mL (246.04 mM; Need ultrasonic) 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.4604 mL 12.3019 mL 24.6039 mL
5 mM 0.4921 mL 2.4604 mL 4.9208 mL
10 mM 0.246 mL 1.2302 mL 2.4604 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Development of SKI-349, a dual-targeted inhibitor of sphingosine kinase and microtubule polymerization

Bioorg Med Chem Lett 2020 Oct 15;30(20):127453.PMID:32736077DOI:10.1016/j.bmcl.2020.127453.

Our sphingosine kinase inhibitor (SKI) optimization studies originated with the optimization of the SKI-I chemotype by replacement of the substituted benzyl rings with substituted phenyl rings giving rise to the discovery of SKI-178. We have recently reported that SKI-178 is a dual-targeted inhibitor of both sphingosine kinase isoforms (SphK1/2) and a microtubule disrupting agent (MDA). In mechanism-of-action studies, we have shown that these two separate actions synergize to induce cancer cell death in acute myeloid leukemia (AML) cell and animal models. Owning to the effectiveness of SKI-178, we sought to further refine the chemotype while maintaining "on-target" SKI and MDA activities. Herein, we modified the "linker region" between the substituted phenyl rings of SKI-178 through a structure guided approach. These studies have yielded the discovery of an SKI-178 congener, SKI-349, with log-fold enhancements in both SphK inhibition and cytotoxic potency. Importantly, SKI-349 also demonstrates log-fold improvements in therapeutic efficacy in a retro-viral transduction model of MLL-AF9 AML as compared to previous studies with SKI-178. Together, our results strengthen the hypothesis that simultaneous targeting of the sphingosine kinases (SphK1/2) and the induction of mitotic spindle assembly checkpoint arrest, via microtubule disruption, might be an effective therapeutic strategy for hematological malignancies including AML.

Targeting sphingosine kinase-1 to inhibit melanoma

Pigment Cell Melanoma Res 2012 Mar;25(2):259-74.PMID:22236408DOI:10.1111/j.1755-148X.2012.00970.x.

Resistance to therapies develops rapidly for melanoma leading to more aggressive disease. Therefore, agents are needed that specifically inhibit proteins or pathways controlling the development of this disease, which can be combined, dependent on genes deregulated in a particular patient's tumors. This study shows that elevated sphingosine-1-phosphate (S-1-P) levels resulting from increased activity of sphingosine kinase-1 (SPHK1) occur in advanced melanomas. Targeting SPHK1 using siRNA decreased anchorage-dependent and -independent growth as well as sensitized melanoma cells to apoptosis-inducing agents. Pharmacological SPHK1 inhibitors SKI-I but not SKI-II decreased S-1-P content, elevated ceramide levels, caused a G2-M block and induced apoptotic cell death in melanomas. Targeting SPHK1 using siRNA or the pharmacological agent called SKI-I decreased the levels of pAKT. Furthermore, SKI-I inhibited the expression of CYCLIN D1 protein and increased the activity of caspase-3/7, which in turn led to the degradation of PARP. In animals, SKI-I but not SKI-II retarded melanoma growth by 25-40%. Thus, targeting SPHK1 using siRNAs or SKI-I has therapeutic potential for melanoma treatment either alone or in combination with other targeted agents.

Development of a sphingosine kinase 1 specific small-molecule inhibitor

Bioorg Med Chem Lett 2010 Dec 15;20(24):7498-502.PMID:21050755DOI:10.1016/j.bmcl.2010.10.005.

The sphingolipid metabolic pathway represents a potential source of new therapeutic targets for numerous hyperproliferative/inflammatory diseases. Targets such as the sphingosine kinases (SphKs) have been extensively studied and numerous strategies have been employed to develop inhibitors against these enzymes. Herein, we report on the optimization of our novel small-molecule inhibitor SKI-I (N'-[(2-hydroxy-1-naphthyl)methylene]-3-(2-naphthyl)-1H-pyrazole-5-carbohydrazide) and the identification of a SphK1-specific analog, SKI-178, that is active in vitro and in vivo. This SphK1 specific small-molecule, non-lipid like, inhibitor will be of use to elucidate the roles of SphK1 and SphK2 in the development/progression of hyperproliferative and/or inflammatory diseases.

Synthesis and bioactivity of sphingosine kinase inhibitors and their novel aspirinyl conjugated analogs

Eur J Med Chem 2010 Sep;45(9):4149-56.PMID:20598402DOI:10.1016/j.ejmech.2010.06.005.

Sphingosine kinase (SphK) is a lipid kinase with oncogenic activity, and SphK inhibitors (SKIs) are known for their anti-cancer activity. Here, we report highly efficient syntheses of SKIs and their aspirinyl (Asp) analogs. Both SKIs and their Asp analogs were highly cytotoxic towards multiple human cancer cell lines; in several cases the Asp analogs were up to three times more effective. Furthermore, they were equally potent inhibitors of SphK. The pharmacokinetic study indicated that SKI-I-Asp cleaved efficiently to form SKI-I and the half-life of SKI-I was increased from approximately 7 h in SKI-I to approximately 10 h in SKI-I-Asp injected mice, thereby prolonging its effect. In summary, the Asp-conjugated SKIs seem to be promising prodrugs of SKIs where delivery in vivo remains a problem.

Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis

J Biol Chem 2012 Apr 6;287(15):12455-68.PMID:22362782DOI:10.1074/jbc.M111.309104.

Autophagy and apoptosis are two evolutionarily conserved processes that regulate cell fate in response to cytotoxic stress. However, the functional relationship between these two processes remains far from clear. Here, we demonstrate an autophagy-dependent mechanism of caspase-8 activation and initiation of the apoptotic cascade in response to SKI-I, a pan-sphingosine kinase inhibitor, and bortezomib, a proteasome inhibitor. Autophagy is induced concomitantly with caspase-8 activation, which is responsible for initiation of the caspase cascade and the mitochondrial amplification loop that is required for full execution of apoptosis. Inhibition of autophagosome formation by depletion of Atg5 or Atg3 results in a marked suppression of caspase-8 activation and apoptosis. Although caspase-8 self-association depends on p62/SQSTM1, its self-processing requires the autophagosomal membrane. Caspase-8 forms a complex with Atg5 and colocalizes with LC3 and p62. Moreover, FADD, an adaptor protein for caspase-8 activation, associates with Atg5 on Atg16L- and LC3-positive autophagosomal membranes and loss of FADD suppresses cell death. Taken together, these results indicate that the autophagosomal membrane serves as a platform for an intracellular death-inducing signaling complex (iDISC) that recruits self-associated caspase-8 to initiate the caspase-8/-3 cascade.