Home>>Signaling Pathways>> Metabolism>> phosphatases>>SHP2 IN-1

SHP2 IN-1 Sale

目录号 : GC30754

SHP2IN-1(compound13)是SHP2(PTPN11)的变构抑制剂,其IC50值为3nM。

SHP2 IN-1 Chemical Structure

Cas No.:1801764-90-8

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥9,326.00
现货
5mg
¥8,479.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

SHP2 IN-1 (compound 13) is an allergic inhibitor of SHP2 (PTPN11), with an IC50 of 3 nM.

[1]. WO2018130928A1.

Chemical Properties

Cas No. 1801764-90-8 SDF
Canonical SMILES O[C@H]1CC2(CCN(C3=NC(N)=C(SC4=C(Cl)C(Cl)=NC=C4)N=C3)CC2)[C@H](N)C1
分子式 C18H22Cl2N6OS 分子量 441.38
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.2656 mL 11.3281 mL 22.6562 mL
5 mM 0.4531 mL 2.2656 mL 4.5312 mL
10 mM 0.2266 mL 1.1328 mL 2.2656 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

BRAF Mutations Classes I, II, and III in NSCLC Patients Included in the SLLIP Trial: The Need for a New Pre-Clinical Treatment Rationale

BRAF V600 mutations have been found in 1-2% of non-small-cell lung cancer (NSCLC) patients, with Food and Drug Administration (FDA) approved treatment of dabrafenib plus trametinib and progression free survival (PFS) of 10.9 months. However, 50-80% of BRAF mutations in lung cancer are non-V600, and can be class II, with intermediate to high kinase activity and RAS independence, or class III, with impaired kinase activity, upstream signaling dependence, and consequently, sensitivity to receptor tyrosine kinase (RTK) inhibitors. Plasma cell-free DNA (cfDNA) of 185 newly diagnosed advanced lung adenocarcinoma patients (Spanish Lung Liquid versus Invasive Biopsy Program, SLLIP, NCT03248089) was examined for BRAF and other alterations with a targeted cfDNA next-generation sequencing (NGS) assay (Guardant360?, Guardant Health Inc., CA, USA), and results were correlated with patient outcome. Cell viability with single or combined RAF, MEK, and SHP2 inhibitors was assessed in cell lines with BRAF class I, II, and III mutations. Out of 185 patients, 22 had BRAF alterations (12%) of which seven patients harbored amplifications (32%) and 17 had BRAF mutations (77%). Of the BRAF mutations, four out of 22 (18%) were V600E and 18/22 (82%) were non-V600. In vitro results confirmed sensitivity of class III and resistance of class I and II BRAF mutations, and BRAF wild type cells to SHP2 inhibition. Concomitant MEK or RAF and SHP2 inhibition showed synergistic effects, especially in the class III BRAF-mutant cell line. Our study indicates that the class of the BRAF mutation may have clinical implications and therefore should be defined in the clinical practice and used to guide therapeutic decisions.

Synthesis and evaluation of oxovanadium(IV) complexes of Schiff-base condensates from 5-substituted-2-hydroxybenzaldehyde and 2-substituted-benzenamine as selective inhibitors of protein tyrosine phosphatase 1B

Five oxovanadium(IV) complexes, which were divided into two groups, [V(IV)O(bhbb, nhbb)(H(2)O)(2)] (tridentate ligands: H(2)bhbb = 2-(5-bromo-2-hydroxylbenzylideneamino)benzoic acid, 1; H(2)nhbb = 2-(5-nitro-2-hydroxylbenzylideneamino)benzoic acid, 2) and [V(IV)O(cpmp, bpmp, npmp)(2)] (bidentate ligands: Hcpmp = 4-chloro-2-((phenylimino)methyl)phenol, 3; Hbpmp = 4-bromo-2-((phenylimino)methyl)phenol, 4; Hnpmp = 4-nitro-2-((phenylimino)methyl) phenol, 5) have been prepared and characterized by elemental analysis, infrared, UV-visible and electrospray ionization mass spectrometry. The coordination in [V(IV)O(bhbb)(H(2)O)(2)] (1) was confirmed by X-ray crystal structure analysis. The oxidation state of V(IV) with d(1) configuration in 1-5 was confirmed by EPR. The speciation of VO/H(2)bhbb in methanol-aqueous solution was investigated by potentiometric pH titrations. The result indicated that the main species were [V(IV)O(bhbb)(OH)](-) and [V(IV)O(bhbb)(OH)(2)](2-) at the pH range 7.0-7.4. The structure-activity relationship of the vanadium complexes in inhibiting protein tyrosine phosphatases (protein tyrosine phosphatase 1B, PTP1B; T-cell protein tyrosine phosphatase, TCPTP; megakaryocyte protein-tyrosine phosphatase, PTP-MEG2; Src homology phosphatase 1, SHP-1 and Src homology phosphatase 2, SHP-2) was investigated. The oxovanadium(IV) complexes were potent inhibitors of PTP1B, TCPTP, PTP-MEG2, SHP-1 and SHP-2, but exhibited different inhibitory abilities over different PTPs. Complexes 2 and 4 displayed better selectivity to PTP1B over the other four PTPs. Kinetic data showed that complex 2 inhibited PTP1B, TCPTP and SHP-1 with a noncompetitive inhibition mode, but a classical competitive inhibition mode for PTP-MEG2 and SHP-2. The results demonstrated that both the structures of vanadium complexes and the conformations of PTPs influenced PTP inhibition activity. The proper modification of the organic ligand moieties may result in screening potent and selective vanadium-based PTP1B inhibitors.

Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome

Noonan syndrome (MIM 163950) is an autosomal dominant disorder characterized by dysmorphic facial features, proportionate short stature and heart disease (most commonly pulmonic stenosis and hypertrophic cardiomyopathy). Webbed neck, chest deformity, cryptorchidism, mental retardation and bleeding diatheses also are frequently associated with this disease. This syndrome is relatively common, with an estimated incidence of 1 in 1,000-2,500 live births. It has been mapped to a 5-cM region (NS1) [corrected] on chromosome 12q24.1, and genetic heterogeneity has also been documented. Here we show that missense mutations in PTPN11 (MIM 176876)-a gene encoding the nonreceptor protein tyrosine phosphatase SHP-2, which contains two Src homology 2 (SH2) domains-cause Noonan syndrome and account for more than 50% of the cases that we examined. All PTPN11 missense mutations cluster in interacting portions of the amino N-SH2 domain and the phosphotyrosine phosphatase domains, which are involved in switching the protein between its inactive and active conformations. An energetics-based structural analysis of two N-SH2 mutants indicates that in these mutants there may be a significant shift of the equilibrium favoring the active conformation. This implies that they are gain-of-function changes and that the pathogenesis of Noonan syndrome arises from excessive SHP-2 activity.

Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha

Cells require optimal substrate stiffness for normal function and differentiation. The mechanisms for sensing matrix rigidity and durotaxis, however, are not clear. Here we showed that control, Shp2-/-, integrin beta1-/-, and talin1-/- cell lines all spread to a threefold greater area on fibronectin (FN)-coated rigid polyacrylamide surfaces than soft. In contrast, RPTPalpha-/- cells spread to the same area irrespective of rigidity on FN surfaces but spread 3x greater on rigid collagen IV-coated surfaces than soft. RPTPalpha and alphavbeta3 integrins were shown previously to be colocalized at leading edges and antibodies to alphavbeta3 blocked FN rigidity sensing. When FN beads were held with a rigid laser trap at the leading edge, stronger bonds to the cytoskeleton formed than when held with a soft trap; whereas back from the leading edge and in RPTPalpha-/- cells, weaker bonds were formed with both rigid and soft laser traps. From the rigidity of the trap, we calculate that a force of 10 pN generated in 1 s is sufficient to activate the rigidity response. We suggest that RPTPalpha and alphavbeta3 at the leading edge are critical elements for sensing FN matrix rigidity possibly through SFK activation at the edge and downstream signaling.