Home>>Signaling Pathways>> Proteases>> Dipeptidyl Peptidase>>Saxagliptin (hydrochloride)

Saxagliptin (hydrochloride) Sale

(Synonyms: 沙克列汀中间体,BMS-477118 hydrochloride) 目录号 : GC44874

A potent DPP-4 inhibitor

Saxagliptin (hydrochloride) Chemical Structure

Cas No.:709031-78-7

规格 价格 库存 购买数量
5mg
¥839.00
现货
10mg
¥1,422.00
现货
25mg
¥3,152.00
现货
50mg
¥5,464.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Saxagliptin is a potent inhibitor of dipeptidyl peptidase 4 (DPP-4; Ki = 0.6 nM). It inhibits DPP-4 ex vivo (ED50 = 0.12 μmol/kg) in plasma from normal fasted rats. Saxagliptin (0.3-3 mg/kg) reduces plasma glucose levels in Zuckerfa/fa diabetic rats in a dose-dependent manner. Oral administration at doses ranging from 1-10 μmol/kg increases plasma insulin levels and improves glucose clearance in ob/ob mice, a transgenic model of obesity. Saxagliptin induces systolic and diastolic dysfunction, reduces contractile force, and exacerbates ischemia-reperfusion injury-induced cardiac dysfunction in isolated guinea pig hearts. Formulations containing saxagliptin have been used for the treatment of type 2 diabetes.

Chemical Properties

Cas No. 709031-78-7 SDF
别名 沙克列汀中间体,BMS-477118 hydrochloride
Canonical SMILES O=C(N1[C@H](C#N)C[C@H]2[C@@H]1C2)[C@H]([C@@]3(C[C@H](C4)C5)C[C@H]5C[C@@]4(O)C3)N.Cl
分子式 C18H25N3O2•HCl 分子量 351.9
溶解度 DMF: 20 mg/ml,DMSO: 20 mg/ml,Ethanol: 10 mg/ml,PBS (pH 7.2): 2 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.8417 mL 14.2086 mL 28.4172 mL
5 mM 0.5683 mL 2.8417 mL 5.6834 mL
10 mM 0.2842 mL 1.4209 mL 2.8417 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Gateways to clinical trials

Methods Find Exp Clin Pharmacol 2009 Jul-Aug;31(6):397-417.PMID:19798455doi

[90Y-DOTA-Tyr3]octreotate, Abatacept, ABT-888, ACE-011, Adefovir dipivoxil, Alosetron hydrochloride, Aminolevulinic acid methyl ester, Amlodipine, Apaziquone, Aripiprazole, AS-101, Atomoxetine hydrochloride, Atrasentan, Azacitidine; Bevacizumab, Biphasic insulin aspart, Bortezomib, Bosentan, Brivanib alaninate; CERE-120, Cetuximab, Ciclesonide, Cinacalcet hydrochloride, Combretastatin A-1 phosphate, Conatumumab, CT-322; Dabigatran etexilate, Darunavir, Deforolimus, Desloratadine, Doripenem, Doxorubicin eluting beads, Duloxetine hydrochloride, Dutasteride; Escitalopram oxalate, Eszopiclone, Etravirine, Exenatide, Ezetimibe, Ezetimibe/simvastatin; Fluticasone furoate, Fondaparinux sodium; Gabapentin enacarbil, Ghrelin (human), Golimumab; IC-51, IDM-2, JX-594; Lidocaine/prilocaine, Liraglutide, Lopinavir, Lopinavir/ritonavir, Lumiracoxib; Men ACWY, MxdnG1; Naproxcinod; OBP-301, Omalizumab; Paclitaxel nanoparticles, Pasireotide, Pazopanib hydrochloride, Pegaptanib octasodium, Peginterferon alfa-2a, Pegvisomant, Pemetrexed disodium, Pimecrolimus, Prasterone, Pregabalin; Raclopride, Ranelic acid distrontium salt, Ranibizumab, RB-006, Recombinant human relaxin H2, REG1, Regadenoson, Reximmune-C, Rilonacept; Saxagliptin, SCH-697243, Solifenacin succinate, Sorafenib; Tadalafil, Tapentadol hydrochloride, Tenofovir disoproxil fumarate, Tenofovir disoproxil fumarate/emtricitabine, Tipifarnib, Tolvaptan; Vardenafil hydrochloride hydrate, Vicriviroc, Volociximab, Vorinostat; WB-1001; Yttrium 90 (90Y) ibritumomab tiuxetan.

Gateways to clinical trials

Methods Find Exp Clin Pharmacol 2009 Sep;31(7):463-93.PMID:19907722doi

Gateways to Clinical Trials is a guide to the most recent clinical trials in current literature and congresses. The data in the following tables has been retrieved from the Clinical Trials Knowledge Area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.com. This issue focuses on the following selection of drugs: AAV1/SERCA2a, Abacavir sulfate/lamivudine, Adalimumab, Aliskiren fumarate, Ambrisentan, Aripiprazole, AT-7519, Atazanavir sulfate, Atomoxetine hydrochloride, Azacitidine, Azelnidipine; Besifloxacin hydrochloride, Bevacizumab, Bioabsorbable everolimus-eluting coronary stent, Bortezomib, Bosentan, Budesonide/formoterol fumarate; CAIV-T, Carisbamate, Casopitant mesylate, Certolizumab pegol, Cetuximab, Ciclesonide, Ciprofloxacin/dexamethasone, CTCE-9908; Dalcetrapib, Darunavir, Deferasirox, Desloratadine, Disitertide, Drotrecogin alfa (activated), DTA-H19, Duloxetine hydrochloride, Dutasteride; Ecogramostim, Efalizumab, Emtricitabine, Eribulin mesilate, Escitalopram oxalate, Eszopiclone, EUR-1008, Everolimus-eluting coronary stent, Exenatide; Fampridine, Fluticasone furoate, Formoterol fumarate/fluticasone propionate, Fosamprenavir calcium, Fulvestrant; Gabapentin enacarbil, GS-7904L; HPV-6/11/16/18, Human Secretin, Hydralazine hydrochloride/isosorbide dinitrate; Imatinib mesylate, Imexon, Inalimarev/Falimarev, Indacaterol, Indacaterol maleate, Inhalable human insulin, Insulin detemir, Insulin glargine, Ixabepilone; L-Alanosine, Lapatinib ditosylate, Lenalidomide, Levocetirizine dihydrochloride, Liraglutide, Lisdexamfetamine mesilate, Lopinavir, Loratadine/montelukast sodium, Lutropin alfa; MeNZB, Mepolizumab, Micafungin sodium, Morphine hydrochloride; Nabiximols, Nikkomycin Z; Olmesartan medoxomil, Omalizumab; Paclitaxel-eluting stent, Pegfilgrastim, Peginterferon alfa-2a, Peginterferon alfa-2b, Perifosine, PF-489791, Plitidepsin, Posaconazole, Pregabalin; QAX-576; Raltegravir potassium, Ramelteon, Rasagiline mesilate, Recombinant human relaxin H2, rhGAD65, Rivaroxaban, Rosuvastatin calcium, Rotigotine; Saxagliptin, SCH-530348, Sirolimus-eluting stent, SLIT-amikacin, Sorafenib, Sotrastaurin, SR-16234, Sulforaphane; Tadalafil, Tanespimycin, Tapentadol hydrochloride, Teriparatide, Tesofensine, Tiotropium bromide, Tipifarnib, Tirapazamine, TMC-207, Tocilizumab, Tolvaptan, Tosedostat, Treprostinil sodium; Ustekinumab; Varespladib methyl, Vicriviroc, Vildagliptin, Vildagliptin/metformin hydrochloride, Volociximab, Voriconazole; Ziconotide, Ziprasidone hydrochloride.

Different approaches for the assessment of greenness of spectrophotometric methodologies utilized for resolving the spectral overlap of newly approved binary hypoglycemic pharmaceutical mixture

Spectrochim Acta A Mol Biomol Spectrosc 2022 May 5;272:120998.PMID:35182920DOI:10.1016/j.saa.2022.120998.

Simultaneous measurement of Saxagliptin hydrochloride (SAG) and dapagliflozin propanediol monohydrate (DAG) in bulk powder, laboratory-prepared mixtures, and pharmaceutical dosage form were applied by utilizing three precise and sensitive spectrophotometric techniques which were developed and validated. The first method was the induced dual-wavelength approach (IDW), which relied primarily on the use of alternative equality factors (F) to abolish the effect of DAG when determining SAG and vice versa. The ratio difference method (RDM) was the second method, which used 25 μg/ml of DAG and 20 μg/ml of SAG as divisors to determine the amplitude difference on the ratio spectrum of SAG and DAG, respectively. SAG was determined at λmax 221 nm after plateau subtraction followed by multiplication by the divisor of DAG 25 μg/ml using the third method, ratio subtraction coupled with extended ratio subtraction method (RSER). Subsequently, using an extension ratio subtraction of the spectra, DAG was determined at λmax 225 nm was determined. The developed methods were effectively used to estimate SAG and DAG in laboratory-prepared mixtures and pharmaceutical dosage forms, with satisfactory recoveries. The methodologies were assessed for their environmental friendliness using the analytical eco-scale, analytical GREEnness calculator, and green analytical procedureindex (GAPI). These methodologies were validated following the International Conference on Harmonisation (ICH) requirements. A statistical comparison of the obtained findings to those of the published method revealed no significant differences in precision and accuracy. Because of their high precision and cost-effectiveness, the developed methods can be used in quality control laboratories to determine the binary mixture.

An analysis of the impact of FDA's guidelines for addressing cardiovascular risk of drugs for type 2 diabetes on clinical development

Contemp Clin Trials 2011 May;32(3):324-32.PMID:21266202DOI:10.1016/j.cct.2011.01.009.

We examined the impact of FDA's 2008 guidelines for addressing cardiovascular risks of new therapies for type 2 diabetes on clinical trials. We focused on the new class of incretin-modulating drugs, exenatide, sitagliptin, Saxagliptin and liraglutide, which were approved in 2005-2010. We contrasted these findings with those from 2 different groups: 1. diabetes drugs approved in the same timeframe but with a non-incretin mechanism of action (colesevelam HCl and bromocriptine mesylate) and 2. diabetes drugs with NDAs delayed and not yet approved within the same time frame (vildagliptin, alogliptin, insulin inhalation powder, and exenatide long acting release). The new guidelines have had an important impact on clinical development. Review time has increased over 2-fold. The increase is seen even if a drug with the same mechanism of action has been already approved. Whereas exenatide (approved in 2005) required 10 months of regulatory review, the approval of liraglutide in 2010 required more than twice as long (21 months). In contrast, the marketing authorization of liraglutide in the EU required 14 months. Additionally, the manufacturer of vildagliptin announced in June 2008, 30 months after the NDA was filed, that a re-submission to meet FDA's demands was not planned. The drug however received marketing authorization in the EU in 2007. The number of randomized patients and patient-years in NDAs increased more than 2.5 and 4 fold, respectively since the guidelines. The significant cost increases and negative publicity because of rare adverse reactions will adversely affect future clinical research in type 2 diabetes and not address its burgeoning health care impact.