Home>>Signaling Pathways>> Microbiology & Virology>> Influenza virus>>RO-7

RO-7 Sale

目录号 : GC32289

RO-7是甲型和乙型流感病毒的二代聚合酶PA亚基内切核酸酶抑制剂。

RO-7 Chemical Structure

Cas No.:1370241-45-4

规格 价格 库存 购买数量
250mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

RO-7 is a next-generation polymerase (PA) endonuclease inhibitor of influenza A and B viruses.

RO-7 is a compound that potently inhibits influenza virus replication and belongs to a new class of drugs in late-stage clinical trials for treatment of influenza virus infection. RO-7 displays broad-spectrum anti-influenza activity in vitro and protects mice from lethal challenge with both influenza A and B viruses[1].

RO-7 protects mice from lethal challenge with both influenza A and B viruses[1].

[1]. Jones JC, et al. Identification of the I38T PA Substitution as a Resistance Marker for Next-Generation InfluenzaVirus Endonuclease Inhibitors. MBio. 2018 Apr 24;9(2). pii: e00430-18.

Chemical Properties

Cas No. 1370241-45-4 SDF
Canonical SMILES O=C1N([C@H](C)C(F)(F)F)CN([C@@H]2C3=CC=CC=C3SCC4=CC=CC=C24)N5C1=C(O)C(C=C5)=O
分子式 C24H20F3N3O3S 分子量 487.49
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.0513 mL 10.2566 mL 20.5132 mL
5 mM 0.4103 mL 2.0513 mL 4.1026 mL
10 mM 0.2051 mL 1.0257 mL 2.0513 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The PA Endonuclease Inhibitor RO-7 Protects Mice from Lethal Challenge with Influenza A or B Viruses

Antimicrob Agents Chemother 2017 Apr 24;61(5):e02460-16.PMID:28193653DOI:10.1128/AAC.02460-16.

Current influenza treatment relies on a single class of antiviral drugs, the neuraminidase inhibitors (NAIs), raising concern over the potential emergence of resistant variants and necessitating the development of novel drugs. In recent years, investigational inhibitors targeting the endonuclease activity of the influenza acidic polymerase (PA) protein have yielded encouraging results, although there are only limited data on their in vivo efficacy. Here, we examined the antiviral potential of the PA endonuclease inhibitor RO-7 in prophylactic and therapeutic regimens in BALB/c mice inoculated with influenza A/California/04/2009 (H1N1)pdm09 or B/Brisbane/60/2008 viruses, which represent currently circulating antigenic variants. RO-7 was administered to mice intraperitoneally twice daily at dosages of 6, 15, or 30 mg/kg/day for 5 days, starting 4 h before or 24 or 48 h after virus inoculation, and showed no adverse effects. Prophylactic administration completely protected mice from lethal infection by influenza A or B virus. The level of therapeutic protection conferred depended upon the time of treatment initiation and RO-7 dosage, resulting in 60 to 100% and 80 to 100% survival with influenza A and B viruses, respectively. RO-7 treatment significantly decreased virus titers in the lung and lessened the extent and severity of lung damage. No PA endonuclease-inhibitor resistance was observed in viruses isolated from lungs of RO-7-treated mice, and the viruses remained susceptible to the drug at nanomolar concentrations in phenotypic assays. These in vivo efficacy results further highlight the potential of RO-7 for development as antiviral therapy for influenza A and B virus infections.

Identification of the I38T PA Substitution as a Resistance Marker for Next-Generation Influenza Virus Endonuclease Inhibitors

mBio 2018 Apr 24;9(2):e00430-18.PMID:29691337DOI:10.1128/mBio.00430-18.

The clinical severity and annual occurrence of influenza virus epidemics, combined with the availability of just a single class of antivirals to treat infections, underscores the urgent need to develop new anti-influenza drugs. The endonuclease activity within the viral acidic polymerase (PA) protein is an attractive target for drug discovery due to the critical role it plays in viral gene transcription. RO-7 is a next-generation PA endonuclease inhibitor of influenza A and B viruses, but its drug resistance potential is unknown. Through serial passage of influenza A(H1N1) viruses in MDCK cells under selective pressure of RO-7, we identified an I38T substitution within the PA endonuclease domain that conferred in vitro resistance to RO-7 (up to a 287-fold change in 50% effective concentration [EC50]). I38T emerged between 5 and 10 passages, and when introduced into recombinant influenza A(H1N1) viruses, alone conferred RO-7 resistance (up to an 81-fold change in EC50). Cocrystal structures of mutant and wild-type endonuclease domains with RO-7 provided the structural basis of resistance, where a key hydrophobic interaction between RO-7 and the Ile38 side chain is compromised when mutated to the polar threonine. While Ile38 does not have a crucial role in coordinating the endonuclease active site, the switch to threonine does affect the polymerase activity of some viruses and influences RO-7 affinity for the PAN target (i.e., the ≈200-residue N-terminal domain of PA). However, the change does not lead to a complete loss of replication activity in vitro Our results predict that RO-7-resistant influenza viruses carrying the I38T substitution may emerge under treatment. This should be taken into consideration for clinical surveillance and in refinement of these drugs.IMPORTANCE The effectiveness of antiviral drugs can be severely compromised by the emergence of resistant viruses. Therefore, determination of the mechanisms by which viruses become resistant is critical for drug development and clinical use. RO-7 is a compound that potently inhibits influenza virus replication and belongs to a new class of drugs in late-stage clinical trials for treatment of influenza virus infection. Here we demonstrate that a single amino acid change acquired under prolonged virus exposure to RO-7 renders influenza viruses significantly less susceptible to its inhibitory effects. We have discovered how the mutation can simultaneously interfere with drug activity and still maintain efficient virus replication. These findings have important implications for the development of more effective derivatives of RO-7-like drugs and provide guidance for how to monitor the emergence of resistance.

A Novel Endonuclease Inhibitor Exhibits Broad-Spectrum Anti-Influenza Virus Activity In Vitro

Antimicrob Agents Chemother 2016 Aug 22;60(9):5504-14.PMID:27381402DOI:10.1128/AAC.00888-16.

Antiviral drugs are important in preventing and controlling influenza, particularly when vaccines are ineffective or unavailable. A single class of antiviral drugs, the neuraminidase inhibitors (NAIs), is recommended for treating influenza. The limited therapeutic options and the potential risk of antiviral resistance are driving the search for additional small-molecule inhibitors that act on influenza virus proteins. The acid polymerase (PA) of influenza viruses is a promising target for new antivirals because of its essential role in initiating virus transcription. Here, we characterized a novel compound, RO-7, identified as a putative PA endonuclease inhibitor. RO-7 was effective when added before the cessation of genome replication, reduced polymerase activity in cell-free systems, and decreased relative amounts of viral mRNA and genomic RNA during influenza virus infection. RO-7 specifically inhibited the ability of the PA endonuclease domain to cleave a nucleic acid substrate. RO-7 also inhibited influenza A viruses (seasonal and 2009 pandemic H1N1 and seasonal H3N2) and B viruses (Yamagata and Victoria lineages), zoonotic viruses (H5N1, H7N9, and H9N2), and NAI-resistant variants in plaque reduction, yield reduction, and cell viability assays in Madin-Darby canine kidney (MDCK) cells with nanomolar to submicromolar 50% effective concentrations (EC50s), low toxicity, and favorable selective indices. RO-7 also inhibited influenza virus replication in primary normal human bronchial epithelial cells. Overall, RO-7 exhibits broad-spectrum activity against influenza A and B viruses in multiple in vitro assays, supporting its further characterization and development as a potential antiviral agent for treating influenza.