Home>>Signaling Pathways>> Neuroscience>> Dopamine Receptor>>(+)-PD 128907 hydrochloride

(+)-PD 128907 hydrochloride Sale

(Synonyms: (+)-PD128907,盐酸盐) 目录号 : GC30848

A potent D3 receptor agonist

(+)-PD 128907 hydrochloride Chemical Structure

Cas No.:300576-59-4

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥2,356.00
现货
5mg
¥2,142.00
现货
10mg
¥2,945.00
现货
25mg
¥5,891.00
现货
50mg
¥8,836.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

(+)-PD 128907 is a potent agonist of the dopamine 3 (D3) receptor (Ki = 1 nM).1,2 It shows selectivity for D3 over D2 and D4 receptors (Kis = 1.2 and 7 ?M, respectively).1 Low doses of (+)-PD 128907 (13 ?g/kg, s.c.) reduce spontaneous locomotor activity in rats.3 It blocks stereotypy induced by the NMDA receptor antagonist (+)-MK-801 in mice.4 (+)-PD 128907 is used in animal models to study the role of the D3 receptor in nervous system disorders, such as schizophrenia, Parkinson’s disease, and depression.5,6

1.Akunne, H.C., Towers, P., Ellis, G.J., et al.Characterization of binding of [3H]PD 128907, a selective dopamine D3 receptor agonist ligand, to CHO-K1 cellsLife Sci.57(15)1401-1410(1995) 2.Pugsley, T.A., Davis, M.D., Akunne, H.C., et al.Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907J. Pharmacol. Exp. Ther.275(3)1355-1366(1995) 3.Bristow, L.J., Cook, G.P., Gay, J.C., et al.The behavioural and neurochemical profile of the putative dopamine D3 receptor agonist, (+)-PD 128907, in the ratNeuropharmacology35(3)285-294(1996) 4.Witkin, J., Gasior, M., Acri, J., et al.Atypical antipsychotic-like effects of the dopamine D3 receptor agonist, (+)-PD 128,907Eur. J. Pharmacol.347(2-3)R1-R3(1998) 5.Carcinella, S., Drui, G., Boulet, S., et al.Implication of dopamine D3 receptor activation in the reversion of Parkinson's disease-related motivational deficitsTransl. Psychiatry4(6)e401(2014) 6.Gil-Mast, S., Kortagere, S., Kota, K., et al.An amino acid residue in the second extracellular loop determines the agonist-dependent tolerance property of the human D3 dopamine receptorACS Chem Neurosci.4(6)940-951(2013)

Chemical Properties

Cas No. 300576-59-4 SDF
别名 (+)-PD128907,盐酸盐
Canonical SMILES CCCN1[C@@]2([H])[C@@](OCC1)([H])C3=CC(O)=CC=C3OC2.Cl
分子式 C14H20ClNO3 分子量 285.77
溶解度 DMSO : 150 mg/mL (524.90 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.4993 mL 17.4966 mL 34.9932 mL
5 mM 0.6999 mL 3.4993 mL 6.9986 mL
10 mM 0.3499 mL 1.7497 mL 3.4993 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The Role of Dopamine D3 Receptor Partial Agonism in Cariprazine-Induced Neurotransmitter Efflux in Rat Hippocampus and Nucleus Accumbens

Cariprazine is an approved antipsychotic and antidepressant which is a dopamine (DA) D3-preferring D3/D2 receptor partial agonist, serotonin (5-HT) 5-HT1A receptor partial agonist, and 5-HT2B and 5-HT2A receptor antagonist, a profile unique for atypical antipsychotic drugs. The purpose of this study was to clarify the effects of cariprazine and selective D3 receptor ligands on neurotransmitter efflux in the rat nucleus accumbens (NAC) and ventral hippocampus (HIP), brain regions important for reality testing, rewarded behavior, and cognition. In vivo microdialysis was performed in awake, freely moving rats after administration of cariprazine; (+)-PD-128907 [(4aR,10bR)-3,4a,4,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride], a D3 receptor-preferring agonist; and SB-277011A [trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolininecarboxamide hydrochloride], a selective D3 receptor antagonist, alone or combined, and extracellular levels of multiple neurotransmitters and metabolites were measured in the NAC and HIP by ultraperformance liquid chromatography with tandem mass spectrometry. Cariprazine increased DA, norepinephrine (NE), and 5-HT efflux in both regions, whereas it increased glycine (Gly) and glutamate efflux only in the NAC and efflux of DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) only in the HIP. Similarly, SB-277011A increased DA, NE, DOPAC, and HVA, but not 5-HT, efflux in the NAC and HIP, and acetylcholine efflux in the HIP. Most of these effects of cariprazine and SB-277011A were fully or partially attenuated by the D3 receptor agonist (+)-PD-128907, suggesting these effects of cariprazine are related to its D3 receptor partial agonism, and that this mechanism, leading to diminished stimulation of D3 receptors, may contribute to its efficacy in both schizophrenia and bipolar disorder. The possible role of Gly in the action of cariprazine is discussed. SIGNIFICANCE STATEMENT: The novel atypical antipsychotic drug cariprazine increased nucleus accumbens and hippocampal neurotransmitter efflux, similar to the actions of the D3 receptor antagonist SB-277011A [trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolininecarboxamide hydrochloride]. The D3 receptor-preferring agonist (+)-PD-128907 [(4aR, 10bR)-3,4a,4,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride], diminished the effects of both compounds on neurotransmitter efflux in both regions. These results suggested D3 receptor partial agonist activity of cariprazine, producing functional antagonism, may contribute to its efficacy in schizophrenia and bipolar disorder.

Multiple dopamine receptors mediate the discriminative stimulus effects of dihydrexidine in rats

The dopamine D(1) receptor agonist dihydrexidine (DHX) [(±)-trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a] phenanthridine hydrochloride] has shown efficacy in animal models of Parkinson's disease and improved cerebral blood flow and working memory of schizophrenic patients. Although the discriminative stimulus effects of DHX, an in-vivo predictor of human subjective effect profile, have only been characterized with respect to activity at D(1) receptors, DHX also has significant affinity for D(2) receptors. This study was designed to characterize the role of D(1) and D(2)/D(3) receptors in mediating the discriminative stimulus effects of DHX. Rats were trained to discriminate DHX [3 mg/kg, intraperitoneally (i.p.)] from the vehicle. The selective dopamine D(1) receptor partial agonist SKF 38393 was fully substituted for DHX. The D(1) receptor antagonist SCH 23390 (0.1 mg/kg, s.c.) and the D(3)-selective antagonist U99194 (10 mg/kg, i.p.) significantly attenuated the discriminative stimulus effects of the training dose of DHX by 80 and 60%, respectively, suggesting that both D(1) and D(3) receptors mediate the discriminative stimulus effects of DHX. In contrast, raclopride (1 mg/kg, i.p.) did not significantly alter the discriminative stimulus effects of DHX, indicating a lack of D(2)-mediated effects. The D(2)/D(3) receptor preferring agonists, quinpirole and (+)-PD 128907 were fully substituted, whereas (+)-7-OH-DPAT was partially substituted for DHX. The DHX bound to D(2) receptors with a Ki of 4.3+0.7 nmol/l was compared with 33.7+4.6 nmol/l at D(3) receptors. Determinations of activity at second messenger systems revealed that DHX functioned as a full agonist at D(3) receptors and a partial agonist at D(2) receptors in vitro. These activities at D(2)/D(3) receptors have shown effects in some preclinical models and clinical disease states. Therefore, the prominent in-vivo agonist activity of DHX at both D(1) receptors and D(2)/D(3) receptors should be considered while making predictions of effects in humans.

A functional fast scan cyclic voltammetry assay to characterize dopamine D2 and D3 autoreceptors in the mouse striatum

Dopamine D2 and D3 autoreceptors are located on pre-synaptic terminals and are known to control the release and synthesis of dopamine. Dopamine D3 receptors have a fairly restricted pattern of expression in the mammalian brain. Their localization in the nucleus accumbens core and shell is of particular interest because of their association with the rewarding properties of drugs of abuse. Using background subtracted fast scan cyclic voltammetry, we investigated the effects of dopamine D2 and D3 agonists on electrically stimulated dopamine release and uptake rates in the mouse caudate-putamen and nucleus accumbens core and shell. The dopamine D2 agonists (-)-quinpirole hydrochloride and 5,6,7,8-Tetrahydro-6-(2-propen-1-yl)-4H-thiazolo[4,5-d]azepin-2-amine dihydrochloride (B-HT 920) had the same dopamine release inhibition effects on caudate-putamen and nucleus accumbens (core and shell) based on their EC(50) and efficacies. This suggests that the dopamine D2 autoreceptor functionality is comparable in all three striatal regions investigated. The dopamine D3 agonists (4aR,10bR)-3,4a,4,10b-Tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride ((+)-PD 128907) and (+/-)-7-Hydroxy-2-dipropylaminotetralin hydrobromide (7-OH-DPAT) had a significantly greater effect on dopamine release inhibition in the nucleus accumbens shell than in caudate-putamen. This study confirms that, the dopamine D3 autoreceptor functionality is greater in the nucleus accumbens shell followed by the nucleus accumbens core, with the caudate-putamen having the least. Neither dopamine D2 nor D3 agonists affected the uptake rates in nucleus accumbens but concentrations greater than 0.3 muM lowered the uptake rate in caudate-putamen. To validate our method of evaluating dopamine D2 and D3 autoreceptors, sulpiride (D2 antagonist) and nafadotride (D3 antagonist) were used to reverse the effects of the dopamine agonists to approximately 100% of the pre-agonist dopamine release concentration. Finally, these results demonstrate a functional voltammetric assay that characterizes dopamine D2-like agonist as either D2- or D3-preferring agonists by taking advantage of the unique receptor density within the striatum.

Preferential involvement of D3 versus D2 dopamine receptors in the effects of dopamine receptor ligands on oral ethanol self-administration in rats

There is evidence that dopamine transmission is involved in reinforcement processes and the present study investigated the relative involvement of D3 versus D2 dopamine receptors in the effects of dopamine ligands on the reinforcing action of ethanol. Rats were trained to self-administer ethanol (10% v/v) orally in a free-choice two-lever operant task using a saccharin-fading procedure. When preference in responding for ethanol over water had developed the rats were tested with several dopamine agonists and antagonists. Pretreatment with the non-selective dopamine agonist, apomorphine (0.01-0.1 mg/kg), the preferential D2 agonist, bromocriptine (1-10 mg/kg) and the selective D3 agonists, 7-OH-DPAT (0.003-0.1 mg/kg), PD 128907 (0.1-3 mg/kg), (+)3PPP (0.3-3 mg/kg), quinelorane (0.0001-0.003 mg/kg) and quinpirole (0.003-0.03 mg/kg), resulted in dose-dependent decreases in responding for ethanol. The relative potencies of the dopamine agonists to decrease ethanol self-administration were highly correlated with their published potencies to produce in vitro functional D3 but not D2 responses. Active doses could be considered as those selectively stimulating receptors involved in the control of dopamine release, suggesting that reduction of dopamine transmission was associated with a decrease in ethanol-reinforced responding. This conclusion was further supported by the finding that pretreatment with the D2/D3 dopamine antagonists, haloperidol (0.1-0.4 mg/kg) and tiapride (10-60 mg/kg), decreased responding for ethanol at doses which have been shown previously to block dopamine transmission.

Dopamine D3 receptors regulate GABAA receptor function through a phospho-dependent endocytosis mechanism in nucleus accumbens

The dopamine D3 receptor, which is highly enriched in nucleus accumbens (NAc), has been suggested to play an important role in reinforcement and reward. To understand the potential cellular mechanism underlying D3 receptor functions, we examined the effect of D3 receptor activation on GABAA receptor (GABAAR)-mediated current and inhibitory synaptic transmission in medium spiny neurons of NAc. Application of PD128907 [(4aR,10bR)-3,4a,4,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride], a specific D3 receptor agonist, caused a significant reduction of GABAAR current in acutely dissociated NAc neurons and miniature IPSC amplitude in NAc slices. This effect was blocked by dialysis with a dynamin inhibitory peptide, which prevents the clathrin/activator protein 2 (AP2)-mediated GABAA receptor endocytosis. In addition, the D3 effect on GABAAR current was prevented by agents that manipulate protein kinase A (PKA) activity. Infusion of a peptide derived from GABAAR beta subunits, which contains an atypical binding motif for the clathrin AP2 adaptor complex and the major PKA phosphorylation sites and binds with high affinity to AP2 only when dephosphorylated, diminished the D3 regulation of IPSC amplitude. The phosphorylated equivalent of the peptide was without effect. Moreover, PD128907 increased GABAAR internalization and reduced the surface expression of GABAA receptor beta subunits in NAc slices, which was prevented by dynamin inhibitory peptide or cAMP treatment. Together, our results suggest that D3 receptor activation suppresses the efficacy of inhibitory synaptic transmission in NAc by increasing the phospho-dependent endocytosis of GABAA receptors.