Home>>Signaling Pathways>> Neuroscience>> Dopamine Receptor>>ONC206

ONC206 Sale

目录号 : GC38935

ONC206 is a selective antagonist of dopamine D2-like receptors (DRD2/3/4) with broad-spectrum anti-tumor activity.

ONC206 Chemical Structure

Cas No.:1638178-87-6

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥1,007.00
现货
1mg
¥364.00
现货
5mg
¥910.00
现货
10mg
¥1,610.00
现货
25mg
¥2,730.00
现货
50mg
¥5,040.00
现货
100mg
¥8,890.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

ONC206 is a selective antagonist of dopamine D2-like receptors (DRD2/3/4) with broad-spectrum anti-tumor activity.

ONC206 is a ClpP agonist regarding the requirement of high doses (50–130?mg/kg) to achieve in vivo efficacy. [2]

[1] Varun Vijay Prabhu, et al. Cancer Res 2017;77(13 Suppl):Abstract nr 4147A. [2] Fennell EMJ, et al. Pharmacol Res Perspect. 2022 Aug;10(4):e00993.

Chemical Properties

Cas No. 1638178-87-6 SDF
Canonical SMILES O=C1N(CC2=CC=C(F)C=C2F)C3=NCCN3C4=C1CN(CC5=CC=CC=C5)CC4
分子式 C23H22F2N4O 分子量 408.44
溶解度 DMSO: 100 mg/mL (244.83 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.4483 mL 12.2417 mL 24.4834 mL
5 mM 0.4897 mL 2.4483 mL 4.8967 mL
10 mM 0.2448 mL 1.2242 mL 2.4483 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Imipridones affect tumor bioenergetics and promote cell lineage differentiation in diffuse midline gliomas

Neuro Oncol 2022 Sep 1;24(9):1438-1451.PMID:35157764DOI:10.1093/neuonc/noac041.

Background: Pediatric diffuse midline gliomas (DMGs) are incurable childhood cancers. The imipridone ONC201 has shown early clinical efficacy in a subset of DMGs. However, the anticancer mechanisms of ONC201 and its derivative ONC206 have not been fully described in DMGs. Methods: DMG models including primary human in vitro (n = 18) and in vivo (murine and zebrafish) models, and patient (n = 20) frozen and FFPE specimens were used. Drug-target engagement was evaluated using in silico ChemPLP and in vitro thermal shift assay. Drug toxicity and neurotoxicity were assessed in zebrafish models. Seahorse XF Cell Mito Stress Test, MitoSOX and TMRM assays, and electron microscopy imaging were used to assess metabolic signatures. Cell lineage differentiation and drug-altered pathways were defined using bulk and single-cell RNA-seq. Results: ONC201 and ONC206 reduce viability of DMG cells in nM concentrations and extend survival of DMG PDX models (ONC201: 117 days, P = .01; ONC206: 113 days, P = .001). ONC206 is 10X more potent than ONC201 in vitro and combination treatment was the most efficacious at prolonging survival in vivo (125 days, P = .02). Thermal shift assay confirmed that both drugs bind to ClpP, with ONC206 exhibiting a higher binding affinity as assessed by in silico ChemPLP. ClpP activation by both drugs results in impaired tumor cell metabolism, mitochondrial damage, ROS production, activation of integrative stress response (ISR), and apoptosis in vitro and in vivo. Strikingly, imipridone treatment triggered a lineage shift from a proliferative, oligodendrocyte precursor-like state to a mature, astrocyte-like state. Conclusion: Targeting mitochondrial metabolism and ISR activation effectively impairs DMG tumorigenicity. These results supported the initiation of two pediatric clinical trials (NCT05009992, NCT04732065).

ONC206 has anti-tumorigenic effects in human ovarian cancer cells and in a transgenic mouse model of high-grade serous ovarian cancer

Am J Cancer Res 2022 Feb 15;12(2):521-536.PMID:35261784doi

ONC206, a dopamine receptor D2 (DRD2) antagonist and imipridone, is a chemically modified derivative of ONC201. Recently, ONC206 and other imipridones were identified as activators of the mitochondrial protease ClpP, inducing downstream pathways that allow them to selectively target cancer cells. Clinical trials showed that ONC201, the first in class imipridone, was well tolerated and exhibited tumor regression in some solid tumors. Our goal was to evaluate the effect of ONC206 on cell proliferation and tumor growth in ovarian cancer cell lines and in a transgenic mouse model of high grade serous ovarian cancer (KpB model). ONC206 was more potent than ONC201 in inhibiting cell proliferation, as evidenced by a 10-fold decrease in IC50 for the SKOV3 and OVCAR5 cell lines. This was accompanied by the results that ONC206 significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, caused cellular stress, and inhibited adhesion and invasion in vitro. Treatment of obese and non-obese KpB mice with ONC206 elevated Bip and ClpP expression and reduced KI67, BCL-XL and DRD2 expression in the ovarian tumors. Our findings demonstrate that ONC206 has anti-tumorigenic effects in ovarian cancer as previously demonstrated by ONC201 but appears to be as well tolerated and more potent. Thus, ONC206 deserves further evaluation in clinical trials.

ONC206, an Imipridone Derivative, Induces Cell Death Through Activation of the Integrated Stress Response in Serous Endometrial Cancer In Vitro

Front Oncol 2020 Oct 20;10:577141.PMID:33194693DOI:10.3389/fonc.2020.577141.

ONC206 (Oncoceutics) is an imipiridone with nanomolar potency and analogue of ONC201, a selective dopamine receptor D2 (DRD2) antagonist currently being investigated in phase II clinical trials for serous endometrial cancer (SEC). This study investigated the anti-proliferative efficacy of ONC206 in SEC cell lines as well as its impact on cellular stress and adhesion/invasion. ONC206 inhibited cellular proliferation in a dose-dependent manner and was more potent than ONC201 in the ARK1 (IC50 = 0.33µM vs. IC50 = 1.59uM) and SPEC-2 (IC50 = 0.24uM vs. IC50 = 0.81uM) cell lines. Treatment with ONC206 resulted in induction of ROS production and reduction of mitochondrial membrane potential, accompanied by an increase in cleaved caspase-3 and caspase-9 activity (p < 0.01). ONC206 also significantly inhibited cellular adhesion and migration in both cell lines (p < 0.01). Pretreatment with the stress inhibitor N-acetylcysteine (NAC) significantly attenuated the efficacy of ONC206 on cell proliferation, ROS production and cellular invasion. ONC206 demonstrates nanomolar potency for the inhibition of proliferation in SEC cells. Specifically, ONC206 utilizes ISR activation as a significant pathway in the propagation of its anti-proliferative and anti-metastatic effects. Thus, ONC206 may be a promising agent in future SEC clinical trials as was its predecessor ONC201.

Induction of Synthetic Lethality by Activation of Mitochondrial ClpP and Inhibition of HDAC1/2 in Glioblastoma

Clin Cancer Res 2022 May 2;28(9):1881-1895.PMID:35417530DOI:10.1158/1078-0432.CCR-21-2857.

Purpose: Novel therapeutic targets are critical to unravel for the most common primary brain tumor in adults, glioblastoma (GBM). We have identified a novel synthetic lethal interaction between ClpP activation and HDAC1/2 inhibition that converges on GBM energy metabolism. Experimental design: Transcriptome, metabolite, and U-13C-glucose tracing analyses were utilized in patient-derived xenograft (PDX) models of GBM. Orthotopic GBM models were used for in vivo studies. Results: We showed that activation of the mitochondrial ClpP protease by mutant ClpP (Y118A) or through utilization of second-generation imipridone compounds (ONC206 and ONC212) in combination with genetic interference of HDAC1 and HDAC2 as well as with global (panobinostat) or selective (romidepsin) HDAC inhibitors caused synergistic reduction of viability in GBM model systems, which was mediated by interference with tricarboxylic acid cycle activity and GBM cell respiration. This effect was partially mediated by activation of apoptosis along with activation of caspases regulated chiefly by Bcl-xL and Mcl-1. Knockdown of the ClpP protease or ectopic expression of a ClpP D190A mutant substantially rescued from the inhibition of oxidative energy metabolism as well as from the reduction of cellular viability by ClpP activators and the combination treatment, respectively. Finally, utilizing GBM PDX models, we demonstrated that the combination treatment of HDAC inhibitors and imipridones prolonged host survival more potently than single treatments or vehicle in vivo. Conclusions: Collectively, these observations suggest that the efficacy of HDAC inhibitors might be significantly enhanced through ClpP activators in model systems of human GBM.

Quantitation of the next-generation imipridone ONC206 in human plasma by a simple and sensitive UPLC-MS/MS assay for clinical pharmacokinetic application

J Pharm Biomed Anal 2022 May 10;213:114685.PMID:PMC8983588DOI:10.1016/j.jpba.2022.114685.

ONC206 is an imipridone derivative that is being developed clinically as a single agent given orally in a first-in-human trial (NCT04541082). This ongoing clinical trial requires pharmacokinetic analysis of ONC206 to fully characterize its pharmacologic profile. There is currently no published bioanalytical method for ONC206 quantitation. To understand the clinical pharmacokinetics of ONC206, a sensitive yet simple uHPLC-MS/MS method for quantitation of ONC206 in human plasma was developed. Protein-precipitation allowed rapid and sensitive bioanalytical measurement of ONC206 in human plasma. A Phenomenex Kinetex C18 (50 ×2.1 mm, 1.3 µm, 100 Å) analytical column achieved symmetrical and sharp chromatography peaks of ONC206 and the internal standard, [2H]7-ONC206, which were detected using multiple reaction monitoring. The assay calibration range was 1-500 ng/mL and was best fit by a linear regression model (r2 > 0.99732 ± 0.0010). The method proved accurate (< ± 9% deviation), precise (<11%CV), selective and specific with no interference and low inter-lot matrix variability. ONC206 demonstrated excellent short-term, long-term, and multiple freeze-thaw cycle stability in solution and human plasma. This fully validated method was used to quantitate ONC206 plasma concentrations from patients enrolled in the aforementioned clinical trial at the NCI to demonstrate its clinical applicability.