Home>>Signaling Pathways>> Proteases>> Mitochondrial Metabolism>>MCU-i4

MCU-i4 Sale

目录号 : GC61790

MCU-i4 is a negative modulator of the mitochondrial calcium uniporter (MCU) complex that directly binds a specific cleft in MICU1 and decreases mitochondrial Ca2+ influx.

MCU-i4 Chemical Structure

Cas No.:371924-24-2

规格 价格 库存 购买数量
10 mg
¥630.00
现货
25 mg
¥1,350.00
现货
50 mg
¥2,250.00
现货
100 mg
¥3,600.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

MCU-i4 is a negative modulator of the mitochondrial calcium uniporter (MCU) complex that directly binds a specific cleft in MICU1 and decreases mitochondrial Ca2+ influx.

MCU-i4 decreases mitochondrial Ca2+ influx. Docking simulations reveal that MCU-i4 directly binds a specific cleft in MICU1, a key element of the MCU complex that controls channel gating. Accordingly, in MICU1-silenced or deleted cells, the inhibitory effect of MCU-i4 is lost. Moreover, MCU-i4 fails to inhibit mitochondrial Ca2+ uptake in cells expressing a MICU1 mutated in the critical amino acids that forge the predicted binding cleft.[1]

[1] Giulia Di Marco, et al. Cell Rep. 2020 Feb 18;30(7):2321-2331.e6.

Chemical Properties

Cas No. 371924-24-2 SDF
Canonical SMILES O=C(C1=C(NC2=CC=C(N(CC)CC)C=C2)C3=CC(C)=CC=C3N=C1)OCC
分子式 C23H27N3O2 分子量 377.48
溶解度 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.6491 mL 13.2457 mL 26.4915 mL
5 mM 0.5298 mL 2.6491 mL 5.2983 mL
10 mM 0.2649 mL 1.3246 mL 2.6491 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

A High-Throughput Screening Identifies MICU1 Targeting Compounds

Cell Rep 2020 Feb 18;30(7):2321-2331.e6.PMID:32075766DOI:10.1016/j.celrep.2020.01.081.

Mitochondrial Ca2+ uptake depends on the mitochondrial calcium uniporter (MCU) complex, a highly selective channel of the inner mitochondrial membrane (IMM). Here, we screen a library of 44,000 non-proprietary compounds for their ability to modulate mitochondrial Ca2+ uptake. Two of them, named MCU-i4 and MCU-i11, are confirmed to reliably decrease mitochondrial Ca2+ influx. Docking simulations reveal that these molecules directly bind a specific cleft in MICU1, a key element of the MCU complex that controls channel gating. Accordingly, in MICU1-silenced or deleted cells, the inhibitory effect of the two compounds is lost. Moreover, MCU-i4 and MCU-i11 fail to inhibit mitochondrial Ca2+ uptake in cells expressing a MICU1 mutated in the critical amino acids that forge the predicted binding cleft. Finally, these compounds are tested ex vivo, revealing a primary role for mitochondrial Ca2+ uptake in muscle growth. Overall, MCU-i4 and MCU-i11 represent leading molecules for the development of MICU1-targeting drugs.

Effects of MICU1-Mediated Mitochondrial Calcium Uptake on Energy Metabolism and Quality of Vitrified-Thawed Mouse Metaphase II Oocytes

Int J Mol Sci 2022 Aug 3;23(15):8629.PMID:35955764DOI:10.3390/ijms23158629.

Background: Oocyte vitrification has been widely used in the treatment of infertility and fertility preservation. However, vitrification-induced mitochondrial damage adversely affects oocyte development. Several studies have reported that mitochondrial calcium uptake protein 1 (MICU1) regulates the uptake of mitochondrial calcium by the mitochondrial calcium uniporter (MCU) and subsequently controls aerobic metabolism and oxidative stress in mitochondria, but research considering oocytes remains unreported. We evaluated whether the addition of MICU1 modulators enhances mitochondrial activity, pyruvate metabolism, and developmental competence after warming of MII oocytes. Methods: Retrieved MII oocytes of mice were classified as vitrified or control groups. After thawing, oocytes of vitrified group were cultured with or without DS16570511 (MICU1 inhibitor) and MCU-i4 (MICU1 activator) for 2 h. Results: Mitochondrial Ca2+ concentration, pyruvate dephosphorylation level, and MICU1 expression of MII oocytes were significantly increased after vitrification. These phenomena were further exacerbated by the addition of MCU-i4 and reversed by the addition of DS16570511 after warming. However, the mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) in vitrified-warmed MII oocytes drop significantly after vitrification, which was improved after MCU-i4 treatment and decreased significantly after DS16570511 treatment. The vitrification process was able to elicit a development competence reduction. After parthenogenetic activation, incubation of the thawed oocytes with MCU-i4 did not alter the cleavage and blastocyst rates. Moreover, incubation of the thawed oocytes with DS16570511 reduced the cleavage and blastocyst rates. Conclusions: MICU1-mediated increasing mitochondrial calcium uptake after vitrification of the MII oocytes promoted the pyruvate oxidation, and this process may maintain oocyte development competence by compensating for the consumption of ATP under stress state.