Home>>Signaling Pathways>> MAPK Signaling>> cAMP>>L-858,051 (hydrochloride)

L-858,051 (hydrochloride) Sale

目录号 : GC44022

A water-soluble activator of adenylate cyclase

L-858,051 (hydrochloride) Chemical Structure

Cas No.:115116-37-5

规格 价格 库存 购买数量
500μg
¥496.00
现货
1mg
¥942.00
现货
5mg
¥3,975.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

L-858,051 is a water-soluble analog of forskolin , a cell-permeant activator of adenylate cyclase. L-858,051 activates adenylate cyclase (EC50 = 3 µM), inhibits glucose transport, and blocks cytochalasin B binding in rat adipocyte membranes. L-858,051 is used to activate adenylate cyclase and initiate signaling through elevated cAMP synthesis in a variety of cell types in culture.

Chemical Properties

Cas No. 115116-37-5 SDF
Canonical SMILES C[C@@]1(O[C@](C=C)(C)C2)[C@@H](OC(CCCN3CCN(C)CC3)=O)[C@@H](O)[C@@]4([H])C(C)(C)CC[C@H](O)[C@]4(C)[C@@]1(O)C2=O.Cl.Cl
分子式 C29H50N2O8•2HCl 分子量 609.6
溶解度 DMF: 20 mg/ml,DMSO: 30 mg/ml,Ethanol: 1 mg/ml,PBS (pH 7.2): 5 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.6404 mL 8.2021 mL 16.4042 mL
5 mM 0.3281 mL 1.6404 mL 3.2808 mL
10 mM 0.164 mL 0.8202 mL 1.6404 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Cardiovascular Safety of Varenicline, Bupropion, and Nicotine Patch in Smokers: A Randomized Clinical Trial

JAMA Intern Med 2018 May 1;178(5):622-631.PMID:29630702DOI:10.1001/jamainternmed.2018.0397.

Importance: Quitting smoking is enhanced by the use of pharmacotherapies, but concerns have been raised regarding the cardiovascular safety of such medications. Objective: To compare the relative cardiovascular safety risk of smoking cessation treatments. Design, setting, and participants: A double-blind, randomized, triple-dummy, placebo- and active-controlled trial (Evaluating Adverse Events in a Global Smoking Cessation Study [EAGLES]) and its nontreatment extension trial was conducted at 140 multinational centers. Smokers, with or without established psychiatric diagnoses, who received at least 1 dose of study medication (n = 8058), as well as a subset of those who completed 12 weeks of treatment plus 12 weeks of follow up and agreed to be followed up for an additional 28 weeks (n = 4595), were included. Interventions: Varenicline, 1 mg twice daily; bupropion hydrochloride, 150 mg twice daily; and nicotine replacement therapy, 21-mg/d patch with tapering. Main outcomes and measures: The primary end point was the time to development of a major adverse cardiovascular event (MACE: cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke) during treatment; secondary end points were the occurrence of MACE and other pertinent cardiovascular events (MACE+: MACE or new-onset or worsening peripheral vascular disease requiring intervention, coronary revascularization, or hospitalization for unstable angina). Results: Of the 8058 participants, 3553 (44.1%) were male (mean [SD] age, 46.5 [12.3] years). The incidence of cardiovascular events during treatment and follow-up was low (<0.5% for MACE; <0.8% for MACE+) and did not differ significantly by treatment. No significant treatment differences were observed in time to cardiovascular events, blood pressure, or heart rate. There was no significant difference in time to onset of MACE for either varenicline or bupropion treatment vs placebo (varenicline: hazard ratio, 0.29; 95% CI, 0.05-1.68 and bupropion: hazard ratio, 0.50; 95% CI, 0.10-2.50). Conclusions and relevance: No evidence that the use of smoking cessation pharmacotherapies increased the risk of serious cardiovascular adverse events during or after treatment was observed. The findings of EAGLES and its extension trial provide further evidence that smoking cessation medications do not increase the risk of serious cardiovascular events in the general population of smokers. Trial registration: clinicaltrials.gov Identifier: NCT01574703.

An ESR study of radical kinetics in L-alpha-amino-n-butyric acid hydrochloride containing L-cysteine hydrochloride

Radiat Res 1989 Dec;120(3):430-41.PMID:2556732doi

On annealing at temperatures near 100 degrees C, carbon-centered radicals migrate to sulfur-centered radicals in X-irradiated crystals of L-alpha-amino-n-butyric acid hydrochloride, CH3CH2CH(NH3-Cl)COOH, containing L-cysteine hydrochloride, SHCH2CH(NH3Cl)COOH. Samples containing 0, 0.5, 1.0, and 1.5% L-cysteine hydrochloride were studied. When no cysteine is present, the carbon-centered radical formed by X irradiation, CH3CH2CHOOH, decays according to a second-order diffusion-controlled rate equation. In samples containing cysteine, the same carbon-centered radicals are formed, but on annealing, they migrate to cysteine, where a perithiyl radical, RSS, is formed. The transfer of carbon-centered radicals to perthiyl radicals follows a pseudo first-order rate equation with an activation energy of 1.15 eV. A decrease in the initial concentration of the carbon-centered radicals or an increase in the initial concentration of cysteine results in an increase in the transfer efficiency. The rate of growth of the perthiyl radical depends on both the initial concentration of cysteine and the initial concentration of carbon-centered radicals. The pseudo first-order rate constant increases when either the initial carbon-centered radical concentration increases or the initial cysteine concentration increases. The mechanism by which radicals move from one lattice site to another in the crystalline material is most likely hydrogen abstraction from a neighboring molecule.

Micellar-emphasized simultaneous determination of ivabradine hydrochloride and felodipine using synchronous spectrofluorimetry

Luminescence 2022 Apr;37(4):569-576.PMID:34995408DOI:10.1002/bio.4187.

A sensitive and green micellar spectrofluorimetric approach was applied for the simultaneous estimation of ivabradine hydrochloride (IVB) and felodipine (FLD) in the ng/ml concentration range. The approach depended on measuring the first derivative synchronous peak amplitude (1 D) of both drugs at ∆λ = 60 nm in a Tween-80 micellar system. The method was rectilinear alongside the concentration ranges 0.02-0.4 μg/ml and 0.05-1.0 μg/ml at 269.5 nm and 378.5 nm for IVB and FLD, respectively. The proposed method was validated by following the International Council for Harmonization guidelines. The method was successfully applied without interference for laboratory-prepared synthetic mixtures, single pharmaceutical preparations, and within spiked biological fluids with acceptable percentage recoveries. A comparison of the performance of the suggested method with other methods, showed no discrepancy. The method's ecofriendly property evaluated using three different tools, confirming an excellent green method.

Enhanced piezo-photocatalysis in Bi0.5Na0.5TiO3@Ag composite to efficiently degrade multiple organic pollutants

J Environ Manage 2022 Dec 1;323:116186.PMID:36103793DOI:10.1016/j.jenvman.2022.116186.

The synergistic piezo-photocatalysis with enhanced efficiency for degrading obstinate pollutants in wastewater is considered as an advanced way to ameliorate the global water contamination. In this work, we report a facile route to construct the Bi0.5Na0.5TiO3@Ag composite by photoreduction of AgNO3 to obtain Ag on Bi0.5Na0.5TiO3 nanoparticles. And the composite was used to degrade three representative pollutants, i.e. ciprofloxacin, methyl orange and mitoxantrone hydrochloride. Remarkably, for methyl orange solution with the initial concentration of 10 mg/L, the degradation rate constant of the composite reached 0.051 min-1. H+ and •O2- play a major role in this degradation process, verified by the radical quenching experiments. The absorption platform of Bi0.5Na0.5TiO3 was located in the UV region, after introducing Ag in the composite, the absorption region broadened to both UV and visible light, greatly promoting the response to light. Simultaneously, the induced piezo-potential by mechanical energy in Bi0.5Na0.5TiO3 hindered the carrier recombination, resulting in high-efficiency synergistic piezo-photocatalytic process. This work provides a paradigm to innovate both material and catalytic way for degrading multiple organic pollutants.

Ketamine Induced Bladder Fibrosis Through MTDH/P38 MAPK/EMT Pathway

Front Pharmacol 2022 Jan 28;12:743682.PMID:35153736DOI:10.3389/fphar.2021.743682.

Purpose: Ketamine is an anesthetic in clinical, but it has also been used as an abusing drug due to its low price and hallucinogenic effects. It is proved that ketamine abusing would cause multiple system damage including the urinary system, which is called ketamine-induced cystitis (KIC). Bladder fibrosis is late stage in KIC and threaten abusers' life. This study aimed to investigate the molecular mechanism of ketamine-induced bladder fibrosis. Methods: Female Sprague Dawley (SD) rats were randomly divided into 3 groups. 2 groups were treated with tail vein injection of ketamine (25 mg/kg/day, 50 mg/kg/day ketamine hydrochloride solution, respectively) for 12 weeks, whereas the control group was treated with normal saline solution. In each group, rat bladders were extracted and samples were examined for pathological and morphological alterations via hematoxylin and eosin (HE) staining, Masson's trichrome staining and immunohistochemistry (IHC). SV-HUC-1 cells were treated with different concentrations of ketamine solution (0, 0.1, 0.5, 1 mmol/L). Rat bladder and SV-HUC-1 cells were extracted protein and RNA for Western blot and RT-PCR detection. Metadherin (MTDH) siRNAs and overexpression plasmids were used to knock down and overexpress the relative genes. P38 mitogen-activated protein kinase (MAPK) inhibitor was utilized to inhibit the MAPK pathway. Results: Rats in the ketamine group exhibited fibrosis compared to rats of the control group and fibrosis were also markedly upregulated in SV-HUC-1 cells after treated with ketamine, which were ketamine concentration-dependent. After treating with ketamine in SV-HUC-1 cells, there was an increase expression of MTDH, epithelial-mesenchymal transition (EMT) markers, P38 MAPK. MTDH knockdown would suppresses P38 MAPK/EMT pathway to inhibit fibrosis, however, MTDH overexpression could promote the pathway in SV-HUC-1 cells. Conclusion: In rats and SV-HUC-1 cells ketamine-treated models, MTDH can regulate EMT through the P38 MAPK pathway to regulate the process of bladder fibrosis.