Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> Proton Pump>>KM91104

KM91104 Sale

目录号 : GC63954

KM 91104 is a cell-permeable inhibitor of V-ATPase that specifically targets the interaction between V-ATPase subunit a3 and subunit B2.

KM91104 Chemical Structure

Cas No.:304481-60-5

规格 价格 库存 购买数量
5 mg
¥1,890.00
现货
10 mg
¥2,970.00
现货
50 mg
¥10,350.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

KM 91104 is a cell-permeable inhibitor of V-ATPase that specifically targets the interaction between V-ATPase subunit a3 and subunit B2.

[1] Giusi Marrone, et al. Hepatology. 2018 Sep;68(3):1140-1153.

Chemical Properties

Cas No. 304481-60-5 SDF Download SDF
分子式 C14H12N2O4 分子量 272.26
溶解度 DMSO : 100 mg/mL (367.30 mM; Need ultrasonic) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.673 mL 18.3648 mL 36.7296 mL
5 mM 0.7346 mL 3.673 mL 7.3459 mL
10 mM 0.3673 mL 1.8365 mL 3.673 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Vacuolar H+-ATPase and Na+/K+-ATPase energize Na+ uptake mechanisms in the nuchal organ of the hyperregulating freshwater crustacean Daphnia magna

J Exp Biol 2021 Jun 15;224(12):jeb242205.PMID:34115859DOI:10.1242/jeb.242205.

The nuchal organ of the embryos and neonates of the cladoceran, Daphnia magna, has been shown to be a site of Na+ influx and H+, NH4+ and Cl- efflux. This study combines the scanning ion-selective electrode technique with application of inhibitors of specific transporters to assess the mechanisms of Na+ transport across the nuchal organ. Na+ influx across the nuchal organ was inhibited both by inhibitors of the Na+/K+-ATPase (ouabain, bufalin) and by inhibitors of the vacuolar H+-ATPase (bafilomycin, N-ethylmaleimde, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, KM91104, S-nitrosoglutathione). Na+ influx was unaffected by the epithelial Na+ channel blocker benzamil, but was sensitive to ethylisopropyl amiloride and elevated external ammonium concentrations, consistent with roles for Na+/H+ and Na+/NH4+ exchangers in the apical membrane but not Na+ channels. Transport across the basolateral membrane into the haemolymph is proposed to involve the Na+/K+-ATPase and a thiazide-sensitive Na+/Cl- cotransporter.

The adenosine monophosphate-activated protein kinase-vacuolar adenosine triphosphatase-pH axis: A key regulator of the profibrogenic phenotype of human hepatic stellate cells

Hepatology 2018 Sep;68(3):1140-1153.PMID:29663481DOI:10.1002/hep.30029.

Liver fibrosis and cirrhosis are characterized by activation of hepatic stellate cells (HSCs), which is associated with higher intracellular pH (pHi). The vacuolar H+ adenosine-triphosphatase (v-ATPase) multisubunit complex is a key regulator of pHi homeostasis. The present work investigated the functional role of v-ATPase in primary human HSC (hHSC) activation and its modulation by specific adenosine monophosphate-activated protein kinase (AMPK) subunits. We demonstrate that the expression of different v-ATPase subunits was increased in in vivo and in vitro activated hHSCs compared to nonactivated hHSCs. Specific inhibition of v-ATPase with bafilomycin and KM91104 induced a down-regulation of the HSC fibrogenic gene profile, which coincided with increased lysosomal pH, decreased pHi, activation of AMPK, reduced proliferation, and lower metabolic activity. Similarly, pharmacological activation of AMPK by treatment with diflunisal, A769662, and ZLN024 reduced the expression of v-ATPase subunits and profibrogenic markers. v-ATPase expression was differently regulated by the AMPK α1 subunit (AMPKα1) and AMPKα2, as demonstrated in mouse embryo fibroblasts specifically deficient for AMPK α subunits. In addition, activation of v-ATPase in hHSCs was shown to be AMPKα1-dependent. Accordingly, pharmacological activation of AMPK in AMPKα1-depleted hHSCs prevented v-ATPase down-regulation. Finally, we showed that v-ATPase expression was increased in fibrotic livers from bile duct-ligated mice and in human cirrhotic livers. Conclusion: The down-regulation of v-ATPase might represent a promising target for the development of antifibrotic strategies. (Hepatology 2018).