Home>>Signaling Pathways>> Others>> Others>>Itch-Targeting Compound 1

Itch-Targeting Compound 1 Sale

目录号 : GC32024

Itch-TargetingCompound1是一种止痒剂。

Itch-Targeting Compound 1 Chemical Structure

Cas No.:793674-76-7

规格 价格 库存 购买数量
1mg
¥11,960.00
现货
5mg
¥23,919.00
现货
10mg
¥40,966.00
现货
20mg
¥72,114.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Itch-Targeting Compound 1 is an anti-itching agent.

Anti-itching Compound 1 (Example 6-4) is effective in preventing itches and is useful for the prevention of or treatments for: reactions on insect's bites, reactions on environmental allergens, skin infections, external vermination, or itches occurring in renal dialysis patients[1].

[1]. MURAKI, Yukiko. 4-(2-FUROYL)AMINOPIPERIDINE COMPOUND USEFUL AS THERAPEUTIC AGENT FOR ITCHING. WO 2004099194 A1.

Chemical Properties

Cas No. 793674-76-7 SDF
Canonical SMILES O=C(C1=CC=CO1)N(C2CCN(CCC(C3CCCCC3)O)CC2)C4=NC=C(C)C=C4.[H]Cl
分子式 C25H36ClN3O3 分子量 462.02
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1644 mL 10.822 mL 21.6441 mL
5 mM 0.4329 mL 2.1644 mL 4.3288 mL
10 mM 0.2164 mL 1.0822 mL 2.1644 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Remimazolam: Non-Clinical and Clinical Profile of a New Sedative/Anesthetic Agent

A program to identify novel intravenous sedatives with a short and predictable duration of action was initiated in the late 1990's by Glaxo Wellcome. The program focussed on the identification of ester-based benzodiazepine derivatives that are rapidly broken down by esterases. Remimazolam was identified as one of the lead compounds. The project at Glaxo was shelved for strategic reasons at the late lead optimization stage. Via the GSK ventures initiative, the program was acquired by the small biotechnology company, TheraSci, and, through successive acquisitions, developed as the besylate salt at CeNeS and PAION. The development of remimazolam besylate has been slow by industry standards, primarily because of the resource limitations of these small companies. It has, however, recently been approved for anesthesia in Japan and South Korea, procedural sedation in the United States, China, and Europe, and for compassionate use in intensive care unit sedation in Belgium. A second development program of remimazolam was later initiated in China, using a slightly different salt form, remimazolam tosylate. This salt form of the compound has also recently been approved for procedural sedation in China. Remimazolam has the pharmacological profile of a classical benzodiazepine, such as midazolam, but is differentiated from other intravenous benzodiazepines by its rapid conversion to an inactive metabolite resulting in a short onset/offset profile. It is differentiated from other intravenous hypnotic agents, such as propofol, by its low liability for cardiovascular depression, respiratory depression, and injection pain. The benzodiazepine antagonist flumazenil can reverse the effects of remimazolam in case of adverse events and further shorten recovery times. The aim of this review is to provide an analysis of, and perspective on, published non-clinical and clinical information on 1) the pharmacology, metabolism, pharmacokinetics, and pharmacodynamic profile of remimazolam, 2) the profile of remimazolam compared with established agents, 3) gaps in the current understanding of remimazolam, 4) the compound's discovery and development process and 5) likely future developments in the clinical use of remimazolam.

Zidovudine

Zidovudine has been well studied during breastfeeding. Milk levels are low and most breastfed infants do not have detectable blood levels. Some breastfed infants have developed anemia during maternal therapy. In the US and other countries where access to clean water and affordable replacement feeding are available, it is recommended that mothers living with HIV not breastfeed their infants to avoid postnatal transmission of HIV-1 infection.

Cu9.1Te4Cl3: A Thermoelectric Compound with Low Thermal and High Electrical Conductivity

Cu9.1Te4Cl3 is a new polymorphic compound in the class of coinage metal polytelluride halides. Copper is highly mobile, which results in multiple order-disorder phase transitions in a limited temperature interval from 240 to 370 K. Mainly as a consequence of thermal transport properties, the compound's thermoelectric figure of merit reaches values up to ZT = 0.15 in the temperature range between room temperature and 523 K. Its structure is closely related to that of Ag10Te4Br3, another coinage metal polytelluride halide, which represents the first p-n-p-switchable semiconductor approachable by a simple temperature change. The title compound outperforms Ag10Te4Br3 in terms of thermoelectric properties by 1 order of magnitude and therefore acts as a link between the class of p-n-p compounds and thermoelectric materials.

Appraisal of Bioactive Compounds of Betel Fruit as Antimalarial Agents by Targeting Plasmepsin 1 and 2: A Computational Approach

In many countries, the fruit of betel (Piper betle Linn) is traditionally used as medicine for treating malaria. It is a fatal disease, and existing medications are rapidly losing potency, necessitating the development of innovative pharmaceutics. The current study attempted to determine the compounds in the n-hexane fraction of betel fruit extract and investigate the potential inhibition of bioactive compounds against aspartic protease plasmepsin 1 (PDB ID: 3QS1) and plasmepsin 2 (PDB ID: 1LEE) of Plasmodium falciparum using a computational approach. The ethanol extract was fractionated into n-hexane and further analyzed using gas chromatography-mass spectrometry (GC-MS) to obtain information regarding the compounds contained in betel fruit. Each compound's potential antimalarial activity was evaluated using AutoDock Vina and compared to artemisinin, an antimalarial drug. Molecular dynamics simulations (MDSs) were performed to evaluate the stability of the interaction between the ligand and receptors. Results detected 20 probable compounds in the n-hexane extract of betel fruit based on GC-MS analysis. The docking study revealed that androstan-17-one,3-ethyl-3-hydroxy-, (5 alpha)- has the highest binding affinity for plasmepsin 1 and plasmepsin 2. The compound exhibits a similar interaction with artemisinin at the active site of the receptors. The compound does not violate Lipinski's rules of five. It belongs to class 5 toxicity with an LD50 of 3000 mg/kg. MDS results showed stable interactions between the compound and the receptors. Our study concluded that androstan-17-one,3-ethyl-3-hydroxy-, (5 alpha)- from betel fruit has the potential to be further investigated as a potential inhibitor of the aspartic protease plasmepsin 1 and plasmepsin 2 of Plasmodium falciparum.

Target-specific compound selectivity for multi-target drug discovery and repurposing

Most drug molecules modulate multiple target proteins, leading either to therapeutic effects or unwanted side effects. Such target promiscuity partly contributes to high attrition rates and leads to wasted costs and time in the current drug discovery process, and makes the assessment of compound selectivity an important factor in drug development and repurposing efforts. Traditionally, selectivity of a compound is characterized in terms of its target activity profile (wide or narrow), which can be quantified using various statistical and information theoretic metrics. Even though the existing selectivity metrics are widely used for characterizing the overall selectivity of a compound, they fall short in quantifying how selective the compound is against a particular target protein (e.g., disease target of interest). We therefore extended the concept of compound selectivity towards target-specific selectivity, defined as the potency of a compound to bind to the particular protein in comparison to the other potential targets. We decompose the target-specific selectivity into two components: 1) the compound's potency against the target of interest (absolute potency), and 2) the compound's potency against the other targets (relative potency). The maximally selective compound-target pairs are then identified as a solution of a bi-objective optimization problem that simultaneously optimizes these two potency metrics. In computational experiments carried out using large-scale kinase inhibitor dataset, which represents a wide range of polypharmacological activities, we show how the optimization-based selectivity scoring offers a systematic approach to finding both potent and selective compounds against given kinase targets. Compared to the existing selectivity metrics, we show how the target-specific selectivity provides additional insights into the target selectivity and promiscuity of multi-targeting kinase inhibitors. Even though the selectivity score is shown to be relatively robust against both missing bioactivity values and the dataset size, we further developed a permutation-based procedure to calculate empirical p-values to assess the statistical significance of the observed selectivity of a compound-target pair in the given bioactivity dataset. We present several case studies that show how the target-specific selectivity can distinguish between highly selective and broadly-active kinase inhibitors, hence facilitating the discovery or repurposing of multi-targeting drugs.