Home>>Signaling Pathways>> Chromatin/Epigenetics>> Histone Deacetylation>>HDAC5 (human, recombinant)

HDAC5 (human, recombinant) Sale

目录号 : GC49693

Active, pure human recombinant enzyme

HDAC5 (human, recombinant) Chemical Structure

规格 价格 库存 购买数量
1 ea
¥6,377.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Histone deacetylases (HDACs) catalyze the deacetylation of core histones, resulting in tightening of nucleosomal integrity, restriction of the access of transcription factors, and suppression of transcription. HDACs also play an important role in mediating nuclear receptor functions by forming co-repressor complexes with nuclear receptors in the absence of ligands. They are also involved in mediating other transcription regulatory pathways by associating with transcription factors, such as E2F, TFIIE, TFIIF, NF-κB, p300, Stat3, p53, and the retinoblastoma (Rb) protein.1 HDAC5 is a Class IIa HDAC which is homologous to yeast Hda 1 and is larger in size than the other two classes of HDACs.1,2 Class IIa HDACs contain a highly conserved C-terminal deacetylase catalytic domain (~420 amino acids) and an N-terminal domain with no similarity to HDACs in other classes. Class IIa HDACs can shuttle between the nucleus and cytoplasm, suggesting potential extranuclear functions by regulating the acetylation status of non-histone substrates. By modifying chromatin structure and other non-histone proteins, HDACs play important roles in controlling complex biological events, including cell development, differentiation, programmed cell death, angiogenesis, and inflammation. Considering these major roles, it is conceivable that dysregulation of HDACs and subsequent imbalance of acetylation and deacetylation may be involved in the pathogenesis of various diseases, including cancer and inflammatory diseases.2

1.Lin, H.Y., Chen, C.S., Lin, S.P., et al.Targeting histone deacetylase in cancer therapyMed. Res. Rev.26(4)397-413(2006) 2.Huang, L.Targeting histone deacetylases for the treatment of cancer and inflammatory diseasesJ. Cell. Physiol.209(3)611-616(2006)

Chemical Properties

Cas No. N/A SDF Download SDF
Canonical SMILES N/A
分子式 N/A 分子量 51
溶解度 N/A 储存条件 -80°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 19.6078 mL 98.0392 mL 196.0784 mL
5 mM 3.9216 mL 19.6078 mL 39.2157 mL
10 mM 1.9608 mL 9.8039 mL 19.6078 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Histone deacetylase 5 interacts with Krüppel-like factor 2 and inhibits its transcriptional activity in endothelium

Cardiovasc Res 2014 Oct 1;104(1):127-37.PMID:25096223DOI:10.1093/cvr/cvu183.

Aims: Vascular endothelial dysfunction and inflammation are hallmarks of atherosclerosis. Krüppel-like factor 2 (KLF2) is a key mediator of anti-inflammatory and anti-atherosclerotic properties of the endothelium. However, little is known of the molecular mechanisms for regulating KLF2 transcriptional activation. Methods and results: Here, we found that histone deacetylase 5 (HDAC5) associates with KLF2 and represses KLF2 transcriptional activation. HDAC5 resided with KLF2 in the nuclei of human umbilical cord vein endothelial cells (HUVECs). Steady laminar flow attenuated the association of HDAC5 with KLF2 via stimulating HDAC5 phosphorylation-dependent nuclear export in HUVEC. We also mapped the KLF2-HDAC5-interacting domains and found that the N-terminal region of HDAC5 interacts with the C-terminal domain of KLF2. Chromatin immunoprecipitation and luciferase reporter assays showed that HDAC5 through a direct association with KLF2 suppressed KLF2 transcriptional activation. HDAC5 overexpression inhibited KLF2-dependent endothelial nitric oxide synthesis (eNOS) promoter activity in COS7 cell and gene expression in both HUVECs and bovine aortic endothelial cells (BAECs). Conversely, HDAC5 silencing enhanced KLF2 transcription and hence eNOS expression in HUVEC. Moreover, we observed that the level of eNOS protein in the thoracic aorta isolated from HDAC5 knockout mice was higher, whereas expression of pro-inflammatory vascular cell adhesion molecule 1 was lower, compared with those of HDAC5 wild-type mice. Conclusions: We reveal a novel role of HDAC5 in modulating the KLF2 transcriptional activation and eNOS expression. These findings suggest that HDAC5, a binding partner and modulator of KLF2, could be a new therapeutic target to prevent vascular endothelial dysfunction associated with cardiovascular diseases.

A new role for histone deacetylase 5 in the maintenance of long telomeres

FASEB J 2013 Sep;27(9):3632-42.PMID:23729589DOI:10.1096/fj.12-224204.

Telomeres are major regulators of genome stability and cell proliferation. A detailed understanding of the mechanisms involved in their maintenance is of foremost importance. Of those, telomere chromatin remodeling is probably the least studied; thus, we intended to explore the role of a specific histone deacetylase on telomere maintenance. We uncovered a new role for histone deacetylase 5 (HDAC5) in telomere biology. We report that HDAC5 is recruited to the long telomeres of osteosarcoma- and fibrosarcoma-derived cell lines, where it ensures proper maintenance of these repetitive regions. Indeed, depletion of HDAC5 by RNAi resulted in the shortening of longer telomeres and homogenization of telomere length in cells that use either telomerase or an alternative mechanism of telomere maintenance. Furthermore, we present evidence for the activation of telomere recombination on depletion of HDAC5 in fibrosarcoma telomerase-positive cancer cells. Of potential importance, we also found that depletion of HDAC5 sensitizes cancer cells with long telomeres to chemotherapeutic drugs. Cells with shorter telomeres were used to control the specificity of HDAC5 role in the maintenance of long telomeres. HDAC5 is essential for the length maintenance of long telomeres and its depletion is required for sensitization of cancer cells with long telomeres to chemotherapy.

miR-124 and miR-9 mediated downregulation of HDAC5 promotes neurite development through activating MEF2C-GPM6A pathway

J Cell Physiol 2018 Jan;233(1):673-687.PMID:28332716DOI:10.1002/jcp.25927.

The class IIa histone deacetylases (HDACs) play important roles in the central nervous system during diverse biological processes such as synaptic plasticity, axon regeneration, cell apoptosis, and neural differentiation. Although it is known that HDAC5 regulates neuronal differentiation, neither the physiological function nor the regulation of HDAC5 in neuronal differentiation is clear. Here, we identify HDAC5 as an inhibitor of neurite elongation and show that HDAC5 is regulated by the brain enriched microRNA miR-124 and miR-9. We discover that HDAC5 inhibits neurite extension both in differentiated P19 cells and primary neurons. We also show that the neuronal membrane glycoprotein GPM6A (M6a) is a direct target gene of HDAC5 regulated transcriptional factor MEF2C. HDAC5 inhibits neurite elongation, acting at least partially via a MEF2C/M6a signaling pathway. We also confirmed the miR-124/miR-9 regulated HDAC5-MEF2C-M6a pathway regulates neurite development in primary neurons. Thus, HDAC5 emerges as a cellular conductor of MEF2C and M6a activity and is regulated by miR-124 and miR-9 to control neurite development.

Histone deacetylase 5 limits cocaine reward through cAMP-induced nuclear import

Neuron 2012 Jan 12;73(1):108-20.PMID:22243750DOI:10.1016/j.neuron.2011.10.032.

Chromatin remodeling by histone deacetylases (HDACs) is a key mechanism regulating behavioral adaptations to cocaine use. We report here that cocaine and cyclic adenosine monophosphate (cAMP) signaling induce the transient nuclear accumulation of HDAC5 in rodent striatum. We show that cAMP-stimulated nuclear import of HDAC5 requires a signaling mechanism that involves transient, protein phosphatase 2A (PP2A)-dependent dephosphorylation of a Cdk5 site (S279) found within the HDAC5 nuclear localization sequence. Dephosphorylation of HDAC5 increases its nuclear accumulation, by accelerating its nuclear import rate and reducing its nuclear export rate. Importantly, we show that dephosphorylation of HDAC5 S279 in the nucleus accumbens suppresses the development, but not expression, of cocaine reward behavior in vivo. Together, our findings reveal a molecular mechanism by which cocaine regulates HDAC5 function to antagonize the rewarding impact of cocaine, likely by putting a brake on drug-stimulated gene expression that supports drug-induced behavioral changes.

GIT1 mediates HDAC5 activation by angiotensin II in vascular smooth muscle cells

Arterioscler Thromb Vasc Biol 2008 May;28(5):892-8.PMID:18292392DOI:10.1161/ATVBAHA.107.161349.

Objective: The G protein-coupled receptor (GPCR)-kinase2 interacting protein1 (GIT1) is a scaffold protein involved in angiotensin II (Ang II) signaling. Histone deacetylase-5 (HDAC5) has emerged as an important substrate of calcium/calmodulin-dependent protein kinase II (CamK II) in GPCR signaling. Here we investigated the hypothesis that Ang II-mediated vascular smooth muscle cell (VSMC) gene transcription involves GIT1-CamK II-dependent phosphorylation of HDAC5. Methods and results: Ang II rapidly stimulated phosphorylation of HDAC5 at Ser498 in VSMCs. Knockdown of GIT1 significantly decreased HDAC5 phosphorylation induced by Ang II. The involvement of Src, phospholipase gamma (PLCgamma), and CamK II in GIT1-mediated HDAC5 phosphorylation was demonstrated. The association of GIT1 and CamK II was constitutive but increased after stimulation with Ang II. Moreover, the interaction of GIT1 and CamK II through the ARF GTPase-activating protein (ARF-GAP) and coiled-coil domains of GIT1 was essential for the phosphorylation of HDAC5. Finally, knockdown of GIT1 decreased myocyte enhancer factor 2 transcriptional activity induced by Ang II. Conclusions: This study identifies a novel function for GIT1 as a mediator of Ang II-induced VSMC gene transcription via a Src-PLCgamma-CamK II-HDAC5 signaling pathway.