Home>>Signaling Pathways>> Ubiquitination/ Proteasome>> Autophagy>>Glaucocalyxin B

Glaucocalyxin B Sale

(Synonyms: 蓝萼乙素) 目录号 : GC33085

GlaucocalyxinB是从中药香茶菜中分离出来的对映-贝壳杉烷型二萜,具有抗癌和抗炎活性。24h内减少HL-60生长的IC50值约为5.86μM。

Glaucocalyxin B Chemical Structure

Cas No.:80508-81-2

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥2,945.00
现货
5mg
¥2,678.00
现货
10mg
¥4,463.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Cell experiment:

The microglia cells viability is assessed by MTT assay. Cells are seeded in 96-well plates at the density of 5 × 104 cells/well. The cell culture supernatant is discarded after treatment with various agents, and then 30 μL of MTT (0.5 mg/mL) solution is added into each well. After incubation for 4 h at 37 °C, 100 μL of DMSO is added into each well to dissolve the formazan dye, and then the absorbance of solubilized formazan is measured by microplate reader[3].

References:

[1]. Yang WH, et al. Glaucocalyxin A and B-induced cell death is related to GSH perturbation in human leukemia HL-60 cells. Anticancer Agents Med Chem. 2013 Oct;13(8):1280-90.
[2]. Pan Y, et al. Glaucocalyxin B induces apoptosis and autophagy in human cervical cancer cells. Mol Med Rep. 2016 Aug;14(2):1751-5.
[3]. Gan P, et al. Anti-inflammatory effects of glaucocalyxin B in microglia cells. J Pharmacol Sci. 2015 May;128(1):35-46.

产品描述

Glaucocalyxin B is an ent kaurane diterpenoid isolated from the Chinese traditional medicine Rabdosia japonica with anticancer and antitumor activity; decreases the growth of HL-60 cells with an IC50 of approximately 5.86 μM at 24 h.

Glaucocalyxin A (GlnA) and (GlnB) dose-dependently decrease the growth of HL-60 cells with an IC50 of approximately 6.15 and 5.86 µM at 24 h, respectively. Both Gln A and B could induce apoptosis, G2/M-phase cycle arrest, DNA damage and the accumulation of reactive oxygen species (ROS) in HL-60 cells[1]. GlnB inhibits the proliferation of human cervical cancer cells in vitro through the induction of apoptosis andautophagy, which may be mediated by the phosphatidylinositol 4,5 bisphosphate 3 kinase/Akt signaling pathway. Treatment with GlnB inhibits the proliferation of HeLa and SiHa cervical cancer cell lines in a dose dependent manner. GlnB increases the apoptotic cell population of and enhanced poly (ADP ribose) polymerase 1 cleavage. GlnB also induces increased light chain 3 II/I protein cleavage, indicating the induction of autophagy. GlnB treatment increases the expression of phosphatase and tensin homolog and decreases the expression of phosphorylated protein kinase B[2]. Glaucocalyxin B (GLB), one of five ent-kauranoid diterpenoids, significantly decreased the generation of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in the lipopolysaccharide (LPS)-activated microglia cells[3].

[1]. Yang WH, et al. Glaucocalyxin A and B-induced cell death is related to GSH perturbation in human leukemia HL-60 cells. Anticancer Agents Med Chem. 2013 Oct;13(8):1280-90. [2]. Pan Y, et al. Glaucocalyxin B induces apoptosis and autophagy in human cervical cancer cells. Mol Med Rep. 2016 Aug;14(2):1751-5. [3]. Gan P, et al. Anti-inflammatory effects of glaucocalyxin B in microglia cells. J Pharmacol Sci. 2015 May;128(1):35-46.

Chemical Properties

Cas No. 80508-81-2 SDF
别名 蓝萼乙素
Canonical SMILES CC1(C)C(CC[C@@]2(C)[C@@]3([H])[C@@]4(C(C([C@H](CC3)[C@H]4OC(C)=O)=C)=O)[C@H](O)C[C@]12[H])=O
分子式 C22H30O5 分子量 374.47
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.6704 mL 13.3522 mL 26.7044 mL
5 mM 0.5341 mL 2.6704 mL 5.3409 mL
10 mM 0.267 mL 1.3352 mL 2.6704 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Glaucocalyxin B Attenuates Ovarian Cancer Cell Growth and Cisplatin Resistance In Vitro via Activating Oxidative Stress

Oxid Med Cell Longev 2022 Feb 25;2022:6324292.PMID:35251480DOI:10.1155/2022/6324292.

Ovarian cancer is one of the fatal gynecological cancers around the world. Cisplatin is the first-line chemotherapy drug for the clinical treatment of ovarian cancer. However, many patients with ovarian cancer are still suffering from resistance to cisplatin. Therefore, the new drug combinations or treatment strategies for ovarian cancer are urgently needed. Glaucocalyxin B (GLB), a diterpenoid isolated from the aerial parts of Rabdosia japonica, has shown antitumor activity in some tumors. However, the mechanisms by which GLB inhibits ovarian cancer remain unclear. In the present study, we showed that GLB potently inhibits ovarian cancer cell growth in a dose-dependent manner. Furthermore, we found that GLB has a notably synergistic antitumor effect with cisplatin. Mechanistically, we found that GLB enhances the sensitivity of ovarian cancer cells to cisplatin via increasing reactive oxygen species (ROS) levels, the phosphorylation of c-Jun N-terminal kinase (JNK), and DNA damage. Interestingly, a synergistic inhibitory effect of GLB with cisplatin was also observed in the cells which were resistance to cisplatin. Together, these data suggest that GLB can sensitize ovarian cancer cells to cisplatin by increasing ROS levels.

Glaucocalyxin B inhibits cartilage inflammatory injury in rheumatoid arthritis by regulating M1 polarization of synovial macrophages through NF-κB pathway

Aging (Albany NY) 2021 Sep 27;13(18):22544-22555.PMID:34580236DOI:10.18632/aging.203567.

Background: Glaucocalyxin B (Gla B) is a type of sesquiterpenoids. At present, there are rare studies on the pharmacological effects and targets of sesquiterpenoids, while multiple sesquiterpenoids have good anti-inflammatory properties. Therefore, in this study, we aimed to investigate the mechanism of Gla B on macrophages and rheumatoid arthritis. Methods: LPS/IFN-γ was used to induce M1 polarization of synovial macrophage (SMG) in vitro, followed by Gla B pretreatment (5 μM and 15 μM). Afterwards, flow cytometry was performed to detect the proportion of M1 cells (F4/80+CD86+), enzyme-linked immunosorbent assay (ELISA) was used to determine the expression levels of M1 cell markers (TNF-α, IL-1β, IL-6, iNOS and IL-12) as well as M2 cell markers (IL-10 and TGF- β1), immunofluorescence (IF) staining was utilized to measure the expression of CD86, the level of ROS was assessed by probe and Western blot was conducted to detect the expression of P65 and p-P65. M1 polarization was detected in SMG cells with P65 silencing after 15 μM Gla B intervention. The culture medium from M1 cell was used to culture cartilage cells in vitro, followed by detection of cartilage cell injury. In animal models, collagen antibodies and LPS were combined to induce RA mouse model. Afterwards, H and E staining was performed to detect pathological changes in mouse joint synovium, safranin O-fast green staining was used to determine cartilage injury, and immunohistochemistry was utilized to detect CD86 and P65 expression. Small molecule-protein docking and co-immunoprecipitation (Co-IP) were used to verify the targeted binding relationship between Gal B and P65. Results: LPS and IFN-γ could induce M1 polarization in SMG. Gal B could inhibit M1 polarization, decrease the levels of TNF-α, IL-1β, IL-6, iNOS and IL-12, inhibit the expression of P65 and p-P65 while did not affect the expression of IL-10 or TGF-β1. Gal B had no significant effect in SMG cells with P65 silencing. The small molecule-protein docking and Co-IP both showed that Gal B had a targeted binding relationship with P65, and Gal B could inhibit joint injury and inflammation in mice. Conclusion: Gal B could target the P65 protein. Moreover, Gal B could inhibit the inflammatory injury of articular cartilage in RA by regulating M1 polarization of SMG through inhibiting the NF-κB signaling.

Simultaneous determination of glaucocalyxin A and Glaucocalyxin B in rat plasma by LC-MS/MS and its application to a pharmacokinetic study after oral administration of Rabdosia japonica extract

Biomed Chromatogr 2018 Feb;32(2).PMID:28873500DOI:10.1002/bmc.4089.

A specific and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated for the analysis of glaucocalyxin A and Glaucocalyxin B in rat plasma using praeruptorin A as an internal standard. Separation was performed on a Hypurity C18 column (2.1 × 50 mm, 5 μm) with isocratic elution using 0.2% formic acid in water-acetonitrile (20:80, v/v). Mass spectrometric detection was conducted using selected reaction monitoring via an electrospray ionization source. Both analytes exhibited good linearity within their concentration ranges (r2 > 0.9932). The lower limit of quantitation of glaucocalyxin A and Glaucocalyxin B was 1.10 ng/mL. Intra- and inter-day precision exhibited an RSD within 14.5%, and the accuracy (RE) ranged from -12.1 to 15.0% at the lower limit of quantitation and three quality control levels. The developed assay was successfully applied to a pharmacokinetic study of glaucocalyxin A and Glaucocalyxin B in rats after oral administration of Rabdosia japonica extract.

Glaucocalyxin B protects against oxygen-glucose-deprivation/reperfusion-induced neuronal injury in PC-12 cells

J Cell Biochem 2019 Apr;120(4):6137-6144.PMID:30304556DOI:10.1002/jcb.27901.

Oxidative stress has been implicated in the development of cerebral ischemia/reperfusion (I/R) injury. Glaucocalyxin B (GLB), one of five ent-kauranoid diterpenoids, was reported to possess neuroprotective activity. However, the effect of GLB on oxygen-glucose-deprivation/reperfusion (OGD/R)-induced cell injury in PC-12 cells has not been explored. PC-12 cells was treated with various concentrations of GLB (0, 2.5, 5 and 10 μM), and cell viability was detected using the MTT assay. PC-12 cells were pretreated with the indicated concentration of GLB (2.5-10 μM, 2 hours pretreatment), and were maintained under OGD for 3 hours, followed by 24 hours of reoxygenation. Cell viability was assessed using the MTT assay. The levels of superoxide dismutase, malondialdehyde, and glutathione peroxidase were detected using commercially available ELISA Kits. Intracellular reactive oxygen species level was measured using the fluorescent probe 2',7'-dichlorofluorescein diacetate. The levels of Bcl-2, Bax, p-Akt, Akt, p-mTOR, mTOR were detected using Western blot. Our results revealed that GLB significantly protected PC12 cells against OGD/R-induced cell injury. In addition, GLB efficiently inhibited oxidative stress and cell apoptosis in OGD/R-stimulated PC-12 cells. Mechanistic studies revealed that pretreatment with GLB could induce the activation of Akt/mTOR signaling pathway resulting in protection of OGD-treated PC12 cells. In conclusion, our data indicate for the first time that GLB protects against OGD/R-induced neuronal injury in PC-12 cells. The mechanism of the protective effect of GLB is partially associated with activation of the Akt/mTOR signaling pathway. Thus, GLB may be a potential agent for protection against cerebral I/R injury.

Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer's disease

Pharmacol Res 2018 Mar;129:262-273.PMID:29179999DOI:10.1016/j.phrs.2017.11.030.

Alzheimer's disease (AD) is the most prevalent form of dementia. The exact pathophysiology of this disease remains incompletely understood and safe and effective therapies are required. AD is highly correlated with neuroinflammation and oxidative stress in brain causing neuronal loss. Nuclear factor of activated B-cells (NF-κB) is involved in physiological inflammatory processes and thus representing a promising target for inflammation-based AD therapy. Phytochemicals are able to interfere with the NF-κB pathway. They inhibit the phosphorylation or the ubiquitination of signaling molecules, and thus, inhibit the degradation of IκB. The translocation of NF-κB to the nucleus and subsequent transcription of pro-inflammatory cytokines are inhibited by the actions of phytochemicals. Additionally, natural compounds preventing the interaction of NF-κB can block NF-κB's transcriptional activity by inhibiting its binding to target DNA. Many polyphenols including curcumin, resveratrol, pterostilbene, punicalagin, macranthoin G, salidroside, 4-O-methylhonokiol, lycopene, genistein, obovatol and gallic acid were reported as potent NF-κB inhibitors for AD treatment. Several alkaloids such as galantamine, Glaucocalyxin B, tetrandrine, berberine, oridonin, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in vivo. Besides, vitamins, tanshinone IIA, artemisinin, dihydroasparagusic acid, geniposide, xanthoceraside, l-theranine, 1,8-cineole and paeoniflorin were described as promising NF-κB inhibitors. In conclusion, natural products from plants represent interesting candidates for AD treatment. They may qualify as promising compounds for the development of derivatives providing enhanced pharmacological features.