Home>>Signaling Pathways>> GPCR/G protein>> Ras>>GDC-6036

GDC-6036 Sale

(Synonyms: 抑制剂) 目录号 : GC64510

GDC-6036 is a KRAS G12C inhibitor that binds irreversibly to switch II pocket of KRAS G12C (when in the inactive GDP-bound state) thereby blocking GTP binding and activation.

GDC-6036 Chemical Structure

Cas No.:2417987-45-0

规格 价格 库存 购买数量
5 mg

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.


Quality Control & SDS

View current batch:


GDC-6036 is a KRAS G12C inhibitor that binds irreversibly to switch II pocket of KRAS G12C (when in the inactive GDP-bound state) thereby blocking GTP binding and activation.

[1] Meng, et al. Anal Chem. 2022 Sep 20;94(37):12927-12933.

Chemical Properties

Cas No. 2417987-45-0 SDF Download SDF
别名 抑制剂
分子式 C29H32ClF4N7O2 分子量 622.06
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。


1 mg 5 mg 10 mg
1 mM 1.6076 mL 8.0378 mL 16.0756 mL
5 mM 0.3215 mL 1.6076 mL 3.2151 mL
10 mM 0.1608 mL 0.8038 mL 1.6076 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。


动物体内配方计算器 (澄清溶液)

给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
% DMSO % % Tween 80 % saline

Research Update

Atroposelective Negishi Coupling Optimization Guided by Multivariate Linear Regression Analysis: Asymmetric Synthesis of KRAS G12C Covalent Inhibitor GDC-6036

J Am Chem Soc 2022 Nov 16;144(45):20955-20963.PMID:36326518DOI:10.1021/jacs.2c09917.

An efficient asymmetric synthesis of a potent KRAS G12C covalent inhibitor, GDC-6036 (1), is reported. The synthesis features a highly atroposelective Negishi coupling to construct the key C-C bond between two highly functionalized pyridine and quinazoline moieties by employing a Pd/Walphos catalytic system. Statistical modeling by comparing computational descriptors of a range of Walphos chiral bisphosphine ligands to a training set of experimental results was used to inform the selection of the best ligand, W057-2, which afforded the desired Negishi coupling product (Ra)-3 in excellent selectivity. A subsequent telescoped reaction sequence of alkoxylation, global deprotection, and acrylamide formation, followed by a final adipate salt formation, furnished GDC-6036 (1) in 40% overall yield from starting materials pyridine 5 and quinazoline 6.

KRAS in NSCLC: State of the Art and Future Perspectives

Cancers (Basel) 2022 Nov 4;14(21):5430.PMID:36358848DOI:10.3390/cancers14215430.

In NSCLC, KRAS mutations occur in up to 30% of all cases, most frequently at codon 12 and 13. KRAS mutations have been linked to adenocarcinoma histology, positive smoking history, and Caucasian ethnicity, although differences have been described across KRAS mutational variants subtypes. KRAS mutations often concur with other molecular alterations, notably TP53, STK11, and KEAP1, which could play an important role in treatment efficacy and patient outcomes. For many years, KRAS mutations have been considered undruggable mainly due to a high toxicity profile and low specificity of compounds. Sotorasib and adagrasib are novel KRAS inhibitors that recently gained FDA approval for pre-treated KRAS mutant NSCLC patients, and other molecules such as GDC-6036 are currently being investigated with promising results. Despite their approval, the efficacy of these drugs is lower than expected and progression among responders has been reported. Mechanisms of acquired resistance to anti-KRAS molecules typically involves either on target secondary mutations (e.g., G12, G13, Q61H, R68S, H95, Y96C, V8L) or off-target alterations. Ongoing trials are currently evaluating strategies for implementing efficacy and overcoming acquired resistance to these compounds. Finally, the efficacy of immune-checkpoint inhibitors still needs to be completely assessed and responses to anti-PD-1/PD-L1 agents may strongly depend on concomitant mutations.

Quantifying KRAS G12C Covalent Drug Inhibitor Activity in Mouse Tumors Using Mass Spectrometry

Anal Chem 2023 Mar 21;95(11):4834-4839.PMID:36876898DOI:10.1021/acs.analchem.2c04417.

The growing opportunities recognized for covalent drug inhibitors, like KRAS G12C inhibitors, are driving the need for mass spectrometry methods that can quickly and robustly measure therapeutic drug activity in vivo for drug discovery research and development. Effective front-end sample preparation is critical for proteins extracted from tumors but is generally labor intensive and impractical for large sample numbers typical in pharmacodynamic (PD) studies. Herein, we describe an automated and integrated sample preparation method for the measurement of activity levels of KRAS G12C drug inhibitor alkylation from complex tumor samples involving high throughput detergent removal and preconcentration followed by quantitation using mass spectrometry. We introduce a robust assay with an average intra-assay coefficient of variation (CV) of 4% and an interassay CV of 6% obtained from seven studies, enabling us to understand the relationship between KRAS G12C target occupancy and the therapeutic PD effect from mouse tumor samples. Further, the data demonstrated that the drug candidate GDC-6036, a KRAS G12C covalent inhibitor, shows dose-dependent target inhibition (KRAS G12C alkylation) and MAPK pathway inhibition, which correlate with high antitumor potency in the MIA PaCa-2 pancreatic xenograft model.

Assessment of KRAS G12C Target Engagement by a Covalent Inhibitor in Tumor Biopsies Using an Ultra-Sensitive Immunoaffinity 2D-LC-MS/MS Approach

Anal Chem 2022 Sep 20;94(37):12927-12933.PMID:36083155DOI:10.1021/acs.analchem.2c03146.

KRAS is one of the most frequently mutated oncogenes, with KRAS G12C recently becoming an actionable target for small molecule intervention. GDC-6036 is an investigational KRAS G12C inhibitor that acts by irreversibly binding to the switch II pocket of KRAS G12C when in the inactive GDP-bound state, thereby blocking GTP binding and activation. Assessing target engagement is an essential component of clinical drug development, helping to demonstrate mechanistic activity, guide dose selection, understand pharmacodynamics as it relates to clinical response, and explore resistance. Here, we report the development of an ultra-sensitive approach for assessing KRAS G12C engagement. Immunoaffinity enrichment with a commercially available anti-RAS antibody was combined with a targeted 2D-LC-MS/MS technique to quantify both free and GDC-6036-bound KRAS G12C proteins. A KRAS G12C-positive non-small cell lung cancer xenograft model was dosed with GDC-6036 to assess the feasibility of this assay for analyzing small core needle biopsies. As predicted, dose-dependent KRAS G12C engagement was observed. To date, a sensitivity of 0.08 fmol/μg of total protein has been achieved for both free and GDC-6036-bound KRAS G12C with as little as 4 μg of total protein extracted from human tumor samples. This sub-fmol/μg level of sensitivity provides a powerful potential approach to assess covalent inhibitor target engagement at the site of action using core needle tumor biopsies from clinical studies.