Home>>Signaling Pathways>> Neuroscience>> AChE>>Violanthin

Violanthin Sale

(Synonyms: 紫罗兰素) 目录号 : GC38026

Violanthin 是从胡椒 Piper bavinum 中分离出来,具有抗氧化和抗菌活性。Violanthin 抑制乙酰胆碱酯酶 (AChE),IC50 值为 79.80 μM。

Violanthin Chemical Structure

Cas No.:40581-17-7

规格 价格 库存 购买数量
1mg
¥810.00
现货
5mg
¥2,421.00
现货
10mg
¥4,113.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Violanthin is isolated from the aerial parts of Piper bavinum, has potent antioxidant and antibacterial activities. Violanthin inhibits acetylcholinesterase (AChE) with an IC50 value of 79.80 μM[1].

[1]. Dung HV, et al. Compounds from the aerial parts of Piper bavinum and their anti-cholinesterase activity. Arch Pharm Res. 2015;38(5):677-82.

Chemical Properties

Cas No. 40581-17-7 SDF
别名 紫罗兰素
Canonical SMILES OC1=C([C@@H]2O[C@@H]([C@@H](O)[C@H](O)[C@H]2O)CO)C(O)=C(C(C=C(C3=CC=C(O)C=C3)O4)=O)C4=C1[C@H]5[C@@H]([C@@H]([C@@H](O)[C@H](C)O5)O)O
分子式 C27H30O14 分子量 578.52
溶解度 Soluble in DMSO 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.7285 mL 8.6427 mL 17.2855 mL
5 mM 0.3457 mL 1.7285 mL 3.4571 mL
10 mM 0.1729 mL 0.8643 mL 1.7285 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Identification of C-glycosyl flavones and quality assessment in Dendrobium nobile

Rapid Commun Mass Spectrom 2021 Mar 30;35(6):e9012.PMID:33238063DOI:10.1002/rcm.9012.

Rationale: Flavones are significant indicators of quality in traditional Chinese medicines (TCMs) and thus play a significant role in the quality control of TCMs in the pharmaceutical industry. Most flavones in Dendrobium nobile Lindl, a TCM with a long cultivation history and rich sources, have not been identified. This study was aimed at identifying the flavones in D. nobile from various habitats. Methods: High-performance liquid chromatography (HPLC) coupled with diode-array detection and HPLC multiple-stage tandem mass spectrometry was used to identify the chemical constituents of D. nobile from various habitats, and a method was established to determine the content of vicenin II, Violanthin and isoviolanthin. Hierarchical cluster analysis, principal component analysis and orthogonal partial least-squares discriminant analysis were used to analyze the variations among 26 batches from different habitats. Results: A total of 33 flavones were tentatively identified. Twenty-five flavones, previously undescribed in D. nobile, were acylated by p-coumaroyl, feruloyl, sinapoyl or 3-hydroxy-3-methylglutaryl. The D. nobile habitats were distinguished by significant differences in their flavone content. The C-glycosyl flavones were demonstrated to be characteristic compounds for evaluating D. nobile from various habitats. In particular, flavones acylated with 3-hydroxy-3-methylglutaryl were specific compounds that were only detected in samples from Yunnan. Conclusions: The results of this study could be used to improve the quality control of D. nobile and could provide references for the identification of acylated C-glycosyl flavones in other natural products.

[Separation and identification of specific components and quality standard of stem of Dendrobium officinale]

Zhongguo Zhong Yao Za Zhi 2016 Jul;41(13):2481-2486.PMID:28905572DOI:10.4268/cjcmm20161318.

The Violanthin, a specific component, was separated and identified from the stems of Dendrobium officinale by chromatographic technique and spectroscopic method for the first time. The microscopic characteristics of D. officinale powder were examined under a microscopy and described. Thin layer chromatography (TLC) method was used for qualitative analysis of the Violanthin from D. officinale stems with a mixture of ethyl acetate, butanone, formic acid and water (4∶3∶1∶1) as the developing solvent on high performance silica gel precoated plate (SGF254) and using aluminium trichloride as a chromagenic agent. The results showed significant characteristics of Violanthin from D. officinale stems on TLC, with certain specificity, and could be used to distinguish it from other easily confusing processed medicinal stems of D. devonianum, D. gratiosissimum and D. aphyllum. The content of naringenin, an active ingredient in D. officinale stems was determined by HPLC analysis on a Bischoff Chromatography HIPAK NC-04 ODS AB column (4.4 mm×250 mm, 5 mm) with acetonitrile-0.1% phosphoric acid solution as the mobile phase for gradient elution. The wavelength was set at 226 nm and column temperature was 25 ℃. The HPLC method showed good linearity within the range of 3.90-250.00 g•mL⁻¹ (r = 0.999 9) for naringenin. The average recovery of naringenin was 99.20% with 0.17% of RSD. The mass fraction of 20 batches of D. officinale stems was between 0.190 and 0.498 mg•g⁻¹. The established qualitative and quantitative method was simple and rapid with good repeatability and accuracy, providing experimental basis for improving the quality standard of D. officinale, with a very important significance to ensure its quality and clinical effect.

Compounds from the aerial parts of Piper bavinum and their anti-cholinesterase activity

Arch Pharm Res 2015;38(5):677-82.PMID:25005067DOI:10.1007/s12272-014-0432-3.

A new alkenylphenol, bavinol A (1), together with six known compounds (2-7) were isolated from the aerial parts of Piper bavinum (Piperaceae). The chemical structures of these compounds were determined by spectroscopic analyses including 2D NMR spectroscopy. The anti-Alzheimer effects of compounds 1-7 were evaluated from acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity assays. Bavinol A (1), ampelopsin (3), and Violanthin (4) exhibited AChE inhibitory activities with IC50 values of 29.80, 59.47 and 79.80 μM. Compound 1 also showed the most potent BChE inhibitory activity with an IC50 value of 19.25 μM.

Molecular Docking Studies on the Anti-viral Effects of Compounds From Kabasura Kudineer on SARS-CoV-2 3CLpro

Front Mol Biosci 2020 Dec 23;7:613401.PMID:33425994DOI:10.3389/fmolb.2020.613401.

The COVID-19 has now been declared a global pandemic by the World Health Organization. No approved drug is currently available; therefore, an urgent need has been developed for any antiviral therapy for COVID-19. Main protease 3CLpro of this novel Coronavirus (SARS-CoV-2) play a critical role in the disease propagation, and hence represent a crucial target for the drug discovery. Herein, we have applied a bioinformatics approach for drug repurposing to identify the possible potent inhibitors of SARS-CoV-2 main proteases 3CLpro (6LU7). In search of the anti-COVID-19 compound, we selected 145 phyto-compounds from Kabasura kudineer (KK), a poly-herbal formulation recommended by AYUSH for COVID-19 which are effective against fever, cough, sore throat, shortness of breath (similar to SARS-CoV2-like symptoms). The present study aims to identify molecules from natural products which may inhibit COVID-19 by acting on the main protease (3CLpro). Obtained results by molecular docking showed that Acetoside (-153.06), Luteolin 7 -rutinoside (-134.6) rutin (-133.06), Chebulagic acid (-124.3), Syrigaresinol (-120.03), Acanthoside (-122.21), Violanthin (-114.9), Andrographidine C (-101.8), myricetin (-99.96), Gingerenone -A (-93.9), Tinosporinone (-83.42), Geraniol (-62.87), Nootkatone (-62.4), Asarianin (-79.94), and Gamma sitosterol (-81.94) are main compounds from KK plants which may inhibit COVID-19 giving the better energy score compared to synthetic drugs. Based on the binding energy score, we suggest that these compounds can be tested against Coronavirus and used to develop effective antiviral drugs.

Violarvensin, a new flavone di-C-glycoside from Viola arvensis

J Nat Prod 1998 Feb;61(2):272-4.PMID:9548860DOI:10.1021/np9701485.

A new flavonoid di-C-glycoside, violarvensin (1), was isolated from the aerial parts of Viola arvensis, together with the known derivative Violanthin (2). The structure of 1 was established as apigenin-6-C-beta-D-glucopyranosyl-8-C-beta-D-6-deoxygulopyrano side by spectral analysis.