Home>>Signaling Pathways>> Neuroscience>> iGluR>>LY3130481

LY3130481 Sale

目录号 : GC36510

LY3130481 是一种跨膜 AMPA 受体调节蛋白 TARP γ-8 依赖性的 AMPA 受体拮抗剂,选择性抑制 AMPA/TARP γ-8 的 IC50 值为 65 nM。

LY3130481 Chemical Structure

Cas No.:1610802-47-5

规格 价格 库存 购买数量
100mg 待询 待询
250mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

LY3130481 is an AMPA receptor antagonist that is dependent upon transmembrane AMPA receptor regulatory protein (TARP) γ-8, selective inhibits AMPA/TARP γ-8 with an IC50 of 65 nM[1]. IC50:65 nM (AMPA/TARP γ-8)[1]

[1]. Gardinier KM,et al. Discovery of the First α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Antagonist Dependent upon Transmembrane AMPA Receptor Regulatory Protein (TARP) γ-8. J Med Chem. 2016 May 26;59(10):4753-68.

Chemical Properties

Cas No. 1610802-47-5 SDF
Canonical SMILES O=C(N1)SC2=C1C=CC([C@H](C)C3=NN(C4=CC=C(OCCO)C=N4)C=C3)=C2
分子式 C19H18N4O3S 分子量 382.44
溶解度 DMSO: 250 mg/mL (653.70 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.6148 mL 13.0739 mL 26.1479 mL
5 mM 0.523 mL 2.6148 mL 5.2296 mL
10 mM 0.2615 mL 1.3074 mL 2.6148 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Auxiliary subunits of AMPA receptors: The discovery of a forebrain-selective antagonist, LY3130481/CERC-611

Biochem Pharmacol 2018 Jan;147:191-200.PMID:28987594DOI:10.1016/j.bcp.2017.09.015.

Drugs originate from the discovery of compounds, natural or synthetic, that bind to proteins (receptors, enzymes, transporters, etc.), the interaction of which modulates biological cascades that have potential therapeutic benefit. Rational strategies for identifying novel drug therapies are typically based on knowledge of the structure of the target proteins and the design of new chemical entities that modulate these proteins in a beneficial manner. The present review discusses a novel approach to drug discovery based on the identification and characterization of auxiliary proteins, the transmembrane AMPA receptor regulatory proteins (TARPs) that are associated with AMPA receptors. Utilizing these auxiliary proteins in compound screening led to the discovery of the TARP-dependent-AMPA forebrain selective receptor antagonist (TDAA), LY3130481/CERC-611 that is currently in clinical development for epilepsy.

Electroencephalographic, cognitive, and neurochemical effects of LY3130481 (CERC-611), a selective antagonist of TARP-γ8-associated AMPA receptors

Neuropharmacology 2017 Nov;126:257-270.PMID:28757050DOI:10.1016/j.neuropharm.2017.07.028.

6-[(1S)-1-[1-[5-(2-hydroxyethoxy)-2-pyridyl]pyrazol-3-yl]ethyl]-3H-1,3-benzothiazol-2-one (LY3130481 or CERC-611) is a selective antagonist of AMPA receptors containing transmembrane AMPA receptor regulatory protein (TARP) γ-8. This molecule has been characterized as a potent and efficacious anticonvulsant in an array of acute and chronic epilepsy models in rodents. The present set of experiments was designed to assess the effects of LY3130481 on the electroencephelogram (EEG), cognitive function, and neurochemical outflow. LY3130481 disrupted food-maintained responding in rats and spontaneous alternation in a Y-maze in mice. In rat fear conditioning, LY3130481 caused a deficit in trace (hippocampal-dependent), but not in delay fear conditioning. Although these effects on cognitive performances were observed, the known cognitive-impairing anticonvulsant, topiramate, did not always produce deficits under these assay conditions. LY3130481 produced modest increases in wake times in rats. In addition, LY3130481 was able to attenuate some impairing effects of standard antiepileptic drugs. The motor-impairing effects of the lacosamide were attenuated by LY3130481 as was the decrease in non-rapid-eye movement sleep induced by carbamazepine. Evaluation of the effect of LY3130481 on neurotransmitter and metabolite efflux in the rat medial prefrontal cortex, using in vivo microdialysis, revealed significant increases in the pro-cognitive and wake-promoting neurotransmitters, histamine and acetylcholine, as well as in serotonin, telemethylhistamine, 5-HIAA, HVA and MHPG. LY3130481 thus presents a novel behavioral profile that will have to be evaluated in patients to fully appreciate its implications for therapeutics. LY3130481 is currently under clinical development as CERC-611 as an antiepileptic.

Targeted Blockade of TARP-γ8-Associated AMPA Receptors: Anticonvulsant Activity with the Selective Antagonist LY3130481 (CERC-611)

CNS Neurol Disord Drug Targets 2017;16(10):1099-1110.PMID:29090671DOI:10.2174/1871527316666171101132047.

Background & objective: 6-[(1S)-1-[1-[5-(2-hydroxyethoxy)-2-pyridyl]pyrazol-3-yl]ethyl]- 3H-1,3-benzothiazol-2-one (LY3130481 or CERC-611) is a selective antagonist of AMPA receptors containing transmembrane AMPA receptor regulatory protein (TARP) γ-8 that is under development for epilepsy. The present study provided a broad inquiry into its anticonvulsant properties. LY3130481 was anticonvulsant in multiple acute seizure provocation models in mice and rats. In addition, LY3130481 was effective against absence seizures in the GAERS genetic model and in the Frings mouse model. Likewise, LY3130481 attenuated convulsions in mice and rats with long-term induction of seizures (e.g., corneal, pentylenetetrazole, hippocampal, and amygdala kindled seizures). In slices of epileptic human cortex, LY3130481 significantly decreased neuronal firing frequencies. LY3130481 displaced from rat brain a radioligand specific for AMPA receptors associated with TARP γ-8 whereas non-TARP-selective molecules did not. Binding was also observed in hippocampus freshly transected from a patient. Results & conclusion: Taken as a whole, the findings reported here establish the broad anticonvulsant efficacy of LY3130481 indicating that blockade of AMPA receptors associated with TARP γ-8 is sufficient for these protective effects.

Modulation of TARP γ 8-Containing AMPA Receptors as a Novel Therapeutic Approach for Chronic Pain

J Pharmacol Exp Ther 2019 Jun;369(3):345-363.PMID:30910921DOI:10.1124/jpet.118.250126.

Nonselective glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists are efficacious in chronic pain but have significant tolerability issues, likely arising from the ubiquitous expression of AMPA receptors in the central nervous system (CNS). Recently, LY3130481 has been shown to selectively block AMPA receptors coassembled with the auxiliary protein, transmembrane AMPA receptor regulatory protein (TARP) γ8, which is highly expressed in the hippocampus but also in pain pathways, including anterior cingulate (ACC) and somatosensory cortices and the spinal cord, suggesting that selective blockade of γ8/AMPA receptors may suppress nociceptive signaling with fewer CNS side effects. The potency of LY3130481 on recombinant γ8-containing AMPA receptors was modulated by coexpression with other TARPs; γ2 subunits affected activity more than γ3 subunits. Consistent with these findings, LY3130481 had decreasing potency on receptors from rat hippocampal, cortical, spinal cord, and cerebellar neurons that was replicated in tissue from human brain. LY3130481 partially suppressed, whereas the nonselective AMPA antagonist GYKI53784 completely blocked, AMPA receptor-dependent excitatory postsynaptic potentials in ACC and spinal neurons in vitro. Similarly, LY3130481 attenuated short-term synaptic plasticity in spinal sensory neurons in vivo in response to stimulation of peripheral afferents. LY3130481 also significantly reduced nocifensive behaviors after intraplantar formalin that was correlated with occupancy of CNS γ8-containing AMPA receptors. In addition, LY3130481 dose-dependently attenuated established gait impairment after joint damage and tactile allodynia after spinal nerve ligation, all in the absence of motor side effects. Collectively, these data demonstrate that LY3130481 can suppress excitatory synaptic transmission and plasticity in pain pathways containing γ8/AMPA receptors and significantly reduce nocifensive behaviors, suggesting a novel, effective, and safer therapy for chronic pain conditions.

Structural Determinants of the γ-8 TARP Dependent AMPA Receptor Antagonist

ACS Chem Neurosci 2017 Dec 20;8(12):2631-2647.PMID:28825787DOI:10.1021/acschemneuro.7b00186.

The forebrain specific AMPA receptor antagonist, LY3130481/CERC-611, which selectively antagonizes the AMPA receptors associated with TARP γ-8, an auxiliary subunit enriched in the forebrain, has potent antiepileptic activities without motor side effects. We designated the compounds with such activities as γ-8 TARP dependent AMPA receptor antagonists (γ-8 TDAAs). In this work, we further investigated the mechanisms of action using a radiolabeled γ-8 TDAA and ternary structural modeling with mutational validations to characterize the LY3130481 binding to γ-8. The radioligand binding to the cells heterologously expressing GluA1 and/or γ-8 revealed that γ-8 TDAAs binds to γ-8 alone without AMPA receptors. Homology modeling of γ-8, based on the crystal structures of a distant TARP homologue, murine claudin 19, in conjunction with knowledge of two γ-8 residues previously identified as critical for the LY3130481 TARP-dependent selectivity provided the basis for a binding mode prediction. This allowed further rational mutational studies for characterization of the structural determinants in TARP γ-8 for LY3130481 activities, both thermodynamically as well as kinetically.