Home>>Signaling Pathways>> DNA Damage/DNA Repair>> DNA Alkylator/Crosslinker>>Duocarmycin

Duocarmycin Sale

目录号 : GC35907

Duocarmycin 是一种 DNA 小沟烷化剂,是一种抗体药物偶联物 (ADC) 毒素。 Duocarmycin 基于其特有的弯曲吲哚结构和螺环丙基环己二烯酮亲电体发挥抗癌活性。

Duocarmycin Chemical Structure

Cas No.:1116745-06-2

规格 价格 库存 购买数量
1mg
¥3,168.00
现货
5mg
¥7,920.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Duocarmycin is based on its characteristic curved indole structure and a spirocyclopropylcyclohexadienone electrophile to act anticancer activity. Duocarmycin is a DNA minor groove binding alkylating agent and explored as drug-antibody conjugates (ADCs) [1].

[1]. Koch MF, et al. Structural, Biochemical, and Computational Studies Reveal the Mechanism of Selective Aldehyde Dehydrogenase 1A1 Inhibition by Cytotoxic Duocarmycin Analogues. Angew Chem Int Ed Engl. 2015 Nov 9;54(46):13550-4.

Chemical Properties

Cas No. 1116745-06-2 SDF
Canonical SMILES O=C(N1C[C@@H](CCl)C2=C1C=C(O)C3=CC=CC=C23)C(N4)=CC5=C4C=CC(OCCN(C)C)=C5
分子式 C26H26ClN3O3 分子量 463.96
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1554 mL 10.7768 mL 21.5536 mL
5 mM 0.4311 mL 2.1554 mL 4.3107 mL
10 mM 0.2155 mL 1.0777 mL 2.1554 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Duocarmycin-based antibody-drug conjugates as an emerging biotherapeutic entity for targeted cancer therapy: Pharmaceutical strategy and clinical progress

Drug Discov Today 2021 Aug;26(8):1857-1874.PMID:34224904DOI:10.1016/j.drudis.2021.06.012.

Duocarmycins are a class of DNA minor-groove-binding alkylating molecules. For the past decade, various Duocarmycin analogues have been used as payloads in the development of antibody-drug conjugates (ADCs). Currently, more than 15 duocarmycin-based ADCs have been studied preclinically, and some of them such as SYD985 have been granted Fast-Track Designation status. Nevertheless, progress in duocarmycin-based ADCs also faces challenges, with setbacks including the termination of BMS-936561/MDX-1203. In this review, we discuss issues associated with the efficacy, pharmacokinetic profile, and toxicological activity of these biotherapeutics. Furthermore, we summarize the latest advances in duocarmycin-based ADCs that have different target specificities and linker chemistries. Evidence from preclinical and clinical studies has indicated that duocarmycin-based ADCs are promising biotherapeutics for oncological application in the future.

Preclinical Development of MGC018, a Duocarmycin-based Antibody-drug Conjugate Targeting B7-H3 for Solid Cancer

Mol Cancer Ther 2020 Nov;19(11):2235-2244.PMID:32967924DOI:10.1158/1535-7163.MCT-20-0116.

B7-H3, also referred to as CD276, is a member of the B7 family of immune regulatory proteins. B7-H3 is overexpressed on many solid cancers, including prostate cancer, renal cell carcinoma, melanoma, squamous cell carcinoma of the head and neck, non-small cell lung cancer, and breast cancer. Overexpression of B7-H3 is associated with disease severity, risk of recurrence and reduced survival. In this article, we report the preclinical development of MGC018, an antibody-drug conjugate targeted against B7-H3. MGC018 is comprised of the cleavable linker-duocarmycin payload, valine-citrulline-seco Duocarmycin hydroxybenzamide azaindole (vc-seco-DUBA), conjugated to an anti-B7-H3 humanized IgG1/kappa mAb through reduced interchain disulfides, with an average drug-to-antibody ratio of approximately 2.7. MGC018 exhibited cytotoxicity toward B7-H3-positive human tumor cell lines, and exhibited bystander killing of target-negative tumor cells when cocultured with B7-H3-positive tumor cells. MGC018 displayed potent antitumor activity in preclinical tumor models of breast, ovarian, and lung cancer, as well as melanoma. In addition, antitumor activity was observed toward patient-derived xenograft models of breast, prostate, and head and neck cancer displaying heterogeneous expression of B7-H3. Importantly, MGC018 exhibited a favorable pharmacokinetic and safety profile in cynomolgus monkeys following repeat-dose administration. The antitumor activity observed preclinically with MGC018, together with the positive safety profile, provides evidence of a potentially favorable therapeutic index and supports the continued development of MGC018 for the treatment of solid cancers. GRAPHICAL ABSTRACT: http://mct.aacrjournals.org/content/molcanther/19/11/2235/F1.large.jpg.

Galactose-modified Duocarmycin prodrugs as senolytics

Aging Cell 2020 Apr;19(4):e13133.PMID:32175667DOI:10.1111/acel.13133.

Senescence is a stable growth arrest that impairs the replication of damaged, old or preneoplastic cells, therefore contributing to tissue homeostasis. Senescent cells accumulate during ageing and are associated with cancer, fibrosis and many age-related pathologies. Recent evidence suggests that the selective elimination of senescent cells can be effective on the treatment of many of these senescence-associated diseases. A universal characteristic of senescent cells is that they display elevated activity of the lysosomal β-galactosidase, and this has been exploited as a marker for senescence (senescence-associated β-galactosidase activity). Consequently, we hypothesized that galactose-modified cytotoxic prodrugs will be preferentially processed by senescent cells, resulting in their selective killing. Here, we show that different galactose-modified Duocarmycin (GMD) derivatives preferentially kill senescent cells. GMD prodrugs induce selective apoptosis of senescent cells in a lysosomal β-galactosidase (GLB1)-dependent manner. GMD prodrugs can eliminate a broad range of senescent cells in culture, and treatment with a GMD prodrug enhances the elimination of bystander senescent cells that accumulate upon whole-body irradiation treatment of mice. Moreover, taking advantage of a mouse model of adamantinomatous craniopharyngioma (ACP), we show that treatment with a GMD prodrug selectively reduced the number of β-catenin-positive preneoplastic senescent cells. In summary, the above results make a case for testing the potential of galactose-modified Duocarmycin prodrugs to treat senescence-related pathologies.

Glypican-3-Specific Antibody Drug Conjugates Targeting Hepatocellular Carcinoma

Hepatology 2019 Aug;70(2):563-576.PMID:30353932DOI:10.1002/hep.30326.

Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death in the world. Therapeutic outcomes of HCC remain unsatisfactory, and novel treatments are urgently needed. GPC3 (glypican-3) is an emerging target for HCC, given the findings that 1) GPC3 is highly expressed in more than 70% of HCC; (2) elevated GPC3 expression is linked with poor HCC prognosis; and (3) GPC3-specific therapeutics, including immunotoxin, bispecific antibody and chimeric antigen receptor T cells. have shown promising results. Here, we postulate that GPC3 is a potential target of antibody-drug conjugates (ADCs) for treating liver cancer. To determine the payload for ADCs against liver cancer, we screened three large drug libraries (> 9,000 compounds) against HCC cell lines and found that the most potent drugs are DNA-damaging agents. Duocarmycin SA and pyrrolobenzodiazepine dimer were chosen as the payloads to construct two GPC3-specific ADCs: hYP7-DC and hYP7-PC. Both ADCs showed potency at picomolar concentrations against a panel of GPC3-positive cancer cell lines, but not GPC3 negative cell lines. To improve potency, we investigated the synergetic effect of hYP7-DC with approved drugs. Gemcitabine showed a synergetic effect with hYP7-DC in vitro and in vivo. Furthermore, single treatment of hYP7-PC induced tumor regression in multiple mouse models. Conclusion: We provide an example of an ADC targeting GPC3, suggesting a strategy for liver cancer therapy.

Bifunctional Duocarmycin Analogues as Inhibitors of Protein Tyrosine Kinases

J Nat Prod 2019 Jan 25;82(1):16-26.PMID:30620194DOI:10.1021/acs.jnatprod.8b00233.

Bifunctional Duocarmycin analogues are highly cytotoxic compounds that have been shown to be irreversible aldehyde dehydrogenase 1 inhibitors. Interestingly, cells with low aldehyde dehydrogenase 1 expression are also sensitive to bifunctional Duocarmycin analogues, suggesting the existence of another target. Through in silico approaches, including principal component analysis, structure-similarity search, and docking calculations, protein tyrosine kinases, and especially the vascular endothelial growth factor receptor 2 (VEGFR-2), were predicted as targets of bifunctional Duocarmycin analogues. Biochemical validation was performed in vitro, confirming the in silico results. Structural optimization was performed to mainly target VEGFR-2, but not aldehyde dehydrogenase 1. The optimized bifunctional Duocarmycin analogue was synthesized. In vitro assays revealed this bifunctional Duocarmycin analogue as a strong inhibitor of VEGFR-2, with low residual aldehyde dehydrogenase 1 activity. Altogether, studies revealed bifunctional Duocarmycin analogues as a new class of naturally derived compounds that express a very high cytotoxicity to cancer cells overexpressing aldehyde dehydrogenase 1 as well as VEGFR-2.