Home>>Signaling Pathways>> Chromatin/Epigenetics>> Epigenetic Reader Domain>>6-Demethoxytangeretin

6-Demethoxytangeretin Sale

(Synonyms: 6-去甲氧基三苯甲基黄嘌呤) 目录号 : GC35175

6-?Demethoxytangeretin 6-去甲氧基三苯甲基黄嘌呤是从柑橘 (Citrus depressa) 分离的黄酮。 6-Demethoxytangeretin 具有抗炎和抗过敏活性,通过间变性淋巴瘤激酶 (ALK) 和丝裂原活化蛋白激酶 (MAPK) 途径抑制人肥大细胞中 IL-6 的产生和基因表达。6-?Demethoxytangeretin 促进 CRE 介导的转录 (与海马神经元的学习和记忆相关)。

6-Demethoxytangeretin Chemical Structure

Cas No.:6601-66-7

规格 价格 库存 购买数量
1mg 待询 待询
5mg
¥1,818.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

6-Demethoxytangeretin is a citrus flavonoid isolated from Citrus depressa. 6-Demethoxytangeretin exerts anti-inflammatory activity and anti-allergic activity, suppresses production and gene expression of interleukin-6 in human mast cell-1 via anaplastic lymphoma kinase (ALK) and mitogen-activated protein kinase (MAPK) pathways[1]. 6-Demethoxytangeretin facilitates the CRE-mediated transcription associated with learning and memory in cultured hippocampal neurons[2].

[1]. Kim YM, et al. A citrus flavonoid, 6-demethoxytangeretin, suppresses production and gene expression of interleukin-6 in human mast cell-1 via anaplastic lymphoma kinase and mitogen-activated protein kinase pathways. Biol Pharm Bull. 2014;37(5):871-6. Epub 2014 Feb 5. [2]. Kawahata I, et al. Potent activity of nobiletin-rich Citrus reticulata peel extract to facilitate cAMP/PKA/ERK/CREB signaling associated with learning and memory in cultured hippocampal neurons: identification of the substances responsible for the pharmacological action. J Neural Transm (Vienna). 2013 Oct;120(10):1397-409.

Chemical Properties

Cas No. 6601-66-7 SDF
别名 6-去甲氧基三苯甲基黄嘌呤
Canonical SMILES O=C1C=C(C2=CC=C(OC)C=C2)OC3=C(OC)C(OC)=CC(OC)=C13
分子式 C19H18O6 分子量 342.34
溶解度 Soluble in DMSO 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.9211 mL 14.6054 mL 29.2107 mL
5 mM 0.5842 mL 2.9211 mL 5.8421 mL
10 mM 0.2921 mL 1.4605 mL 2.9211 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

A citrus flavonoid, 6-Demethoxytangeretin, suppresses production and gene expression of interleukin-6 in human mast cell-1 via anaplastic lymphoma kinase and mitogen-activated protein kinase pathways

Biol Pharm Bull 2014;37(5):871-6.PMID:24500009DOI:10.1248/bpb.b13-00875.

Citrus species has been traditionally used in Korea for the treatment of coughing, sputum and dyspepsia. Of the known citrus flavonoids, 6-Demethoxytangeretin was reported to exert anti-inflammatory activity. In order to determine the anti-allergic activity of 6-Demethoxytangeretin, we examined whether or not 6-Demethoxytangeretin was able to suppress activation of the human mast cell line, HMC-1, induced by phorbol 12-myristate 13-acetate (PMA) plus A23187. Interleukin-6 production and relevant gene expression in activated HMC-1 cells were determined by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis. Also, the involvement of the anaplastic lymphoma kinase (ALK) and mitogen-activated protein kinases (MAPKs) in activated HMC-1 cells were studied. 6-Demethoxytangeretin suppresses interleukin-6 production, tumor necrosis factor-alpha gene expression, ALK and MAPKs in HMC-1 cells stimulated by PMA plus A23187. Therefore, it was evident that 6-Demethoxytangeretin suppressed activation of HMC-1 cells by PMA plus A23187 by inhibiting the activity of ALK and MAPKs and subsequently suppressing gene expression, which suggest that 6-Demethoxytangeretin may be involved in the regulation of mast cell-mediated inflammatory responses.

6-demethoxynobiletin, a nobiletin-analog citrus flavonoid, enhances extracellular signal-regulated kinase phosphorylation in PC12D cells

Biol Pharm Bull 2013;36(10):1646-9.PMID:23934345DOI:10.1248/bpb.b13-00230.

We previously demonstrated that nobiletin, a polymethoxylated flavone isolated from citrus peels, has the potential to improve cognitive dysfunction in patients with Alzheimer's disease (AD). Recent studies suggest that the generation of intraneuronal amyloid-beta (Aβ) oligomers is an early event in the pathogenesis of AD. Aβ oligomers cause deficits in the regulation of the extracellular signal-regulated kinase (ERK) signaling which is critical for consolidation of the memory. Our previous studies revealed that nobiletin activated ERK signaling and subsequent cyclic AMP response element-dependent transcription. In this study, the effects of five nobiletin analogs, 6-demethoxynobiletin, tangeretin, 5-demethylnobiletin, sinensetin, and 6-Demethoxytangeretin, isolated from citrus peels were assessed on ERK phosphorylation in PC12D cells, and the structure-activity relationships were examined. PC12D cells were treated with nobiletin or its analogs, and the cell extracts were analyzed by Western blotting using an antibody specific to phosphorylated ERK. 6-Demethoxynobiletin markedly enhanced ERK phosphorylation in a concentration-dependent manner. These results may be useful in developing drugs and functional foods using citrus peels for the treatment of dementia including AD.

In silico-based identification of phytochemicals as novel human phosphoglycerate mutase 1 (PGAM1) inhibitors for cancer therapy

Pak J Pharm Sci 2021 Mar;34(2(Supplementary)):665-670.PMID:34275800doi

Targeting cancer-specific metabolic and mitochondrial remodeling has emerged as a novel and selective strategy for cancer therapy during recent years. Phosphoglycerate Mutase 1 (PGAM1) is an important glycolytic enzyme that catalyzes the conversion of 3-phosphoglycerate to 2-phosphoglycerate and plays a critical role in cancer progression by coordinating glycolysis and biosynthesis. PGAM1 has been reported to be over expressed in a variety of cancer types and its inhibition results in decreased tumor growth and metastasis. Recently, there has been a growing interest in identification and characterization of novel PGAM1 inhibitors for the treatment of cancer. In the current study, in silico tools were used to find out natural inhibitors of PGAM1. For docking studies, a database of 5006 phytochemicals were docked against PGAM1, using MOE software in order to identify the compounds which show better binding affinities than PGMI-004A. Out of 5006 compounds screened, eight compounds (1,3-cyclopentanedione, glyflavanone B, 6-Demethoxytangeretin, gnaphaliin, lantalucratin A and -(-) morelensin, abyssinin II and monotesone-A) showed significant binding affinity with PGAMI active site. Further, the eight selected compounds were evaluated for different pharmacokinetics parameters using admetSAR, the obtained results demonstrated that none of these hit compounds violated Lipinski's drug rule of 5 and all the hit compounds possess favorable ADMET properties. This study has unveiled the potential of phytochemicals that could serve as probable lead candidates for the development of PGAM1 inhibitors as anti-cancer agents.

Nobiletin and its related flavonoids with CRE-dependent transcription-stimulating and neuritegenic activities

Biochem Biophys Res Commun 2005 Dec 2;337(4):1330-6.PMID:16253614DOI:10.1016/j.bbrc.2005.10.001.

cAMP response element (CRE) transcription is dysregulated in neurodegenerative disorders in the central nervous system (CNS), including polyglutamine diseases. As the first step to find natural compounds with protective action against neurodegeneration in the CNS, we here examined whether six citrus flavonoids, namely nobiletin, 5-demethylnobiletin, tangeretin, sinensetin, 6-Demethoxytangeretin, and 6-demethoxynobiletin, stimulated CRE-dependent transcription and induced neurite outgrowth in PC12D cells. Among the compounds, nobiletin most potently enhanced CRE-dependent transcription and neurite outgrowth by activating ERK/MAP kinase-dependent signalling to increase CREB phosphorylation. The transcription and neurite outgrowth were stimulated by nobiletin in a concentration-dependent manner, with a strong correlation between them. Furthermore, a 11-day oral administration of nobiletin rescued impaired memory in olfactory-bulbectomized mice documented to be accompanied by a cholinergic neurodegeneration. These results suggest that nobiletin with the activity to improve impaired memory may become a potential leading compound for drug development for neurodegenerative disorders exhibiting the dysregulated CRE-dependent transcription.

Potent activity of nobiletin-rich Citrus reticulata peel extract to facilitate cAMP/PKA/ERK/CREB signaling associated with learning and memory in cultured hippocampal neurons: identification of the substances responsible for the pharmacological action

J Neural Transm (Vienna) 2013 Oct;120(10):1397-409.PMID:23588349DOI:10.1007/s00702-013-1025-x.

cAMP/PKA/ERK/CREB signaling linked to CRE-mediated transcription is crucial for learning and memory. We originally found nobiletin as a natural compound that stimulates this intracellular signaling and exhibits anti-dementia action in animals. Citrus reticulata or C. unshiu peels are employed as "chinpi" and include a small amount of nobiletin. We here provide the first evidence for beneficial pharmacological actions on the cAMP/PKA/ERK/CREB cascade of extracts from nobiletin-rich C.reticulata peels designated as Nchinpi, the nobiletin content of which was 0.83 ± 0.13% of the dry weight or 16-fold higher than that of standard chinpi extracts. Nchinpi extracts potently facilitated CRE-mediated transcription in cultured hippocampal neurons, whereas the standard chinpi extracts showed no such activity. Also, the Nchinpi extract, but not the standard chinpi extract, stimulated PKA/ERK/CREB signaling. Interestingly, treatment with the Nchinpi extract at the concentration corresponding to approximately 5 μM nobiletin more potently facilitated CRE-mediated transcriptional activity than did 30 μM nobiletin alone. Consistently, sinensetin, tangeretin, 6-demethoxynobiletin, and 6-Demethoxytangeretin were also identified as bioactive substances in Nchinpi that facilitated the CRE-mediated transcription. Purified sinensetin enhanced the transcription to a greater degree than nobiletin. Furthermore, samples reconstituted with the four purified compounds and nobiletin in the ratio of each constituent's content in the extract showed activity almost equal to that of the Nchinpi extract to stimulate CRE-mediated transcription. These findings suggest that above four compounds and nobiletin in the Nchinpi extract mainly cooperated to facilitate potently CRE-mediated transcription linked to the upstream cAMP/PKA/ERK/CREB pathway in hippocampal neurons.