Home>>Analytical Standards>>Fentanyl N-oxide

Fentanyl N-oxide Sale

(Synonyms: 芬太尼N-氧化物) 目录号 : GC48691

An Analytical Reference Standard

Fentanyl N-oxide Chemical Structure

Cas No.:85893-37-4

规格 价格 库存 购买数量
1mg
¥1,113.00
现货
5mg
¥5,019.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Fentanyl N-oxide is an analytical reference standard categorized as an oxidative product of fentanyl .1 Fentanyl N-oxide is regulated as a Schedule II compound in the United States. This product is intended for research and forensic applications.

1.Garg, A., Solas, D.W., Takahashi, L.H., et al.Forced degradation of fentanyl: Identification and analysis of impurities and degradantsJ. Pharm. Biomed. Anal.53(3)325-334(2010)

Chemical Properties

Cas No. 85893-37-4 SDF
别名 芬太尼N-氧化物
Canonical SMILES O=[N]1(CCC2=CC=CC=C2)CCC(N(C3=CC=CC=C3)C(CC)=O)CC1
分子式 C22H28N2O2 分子量 352.5
溶解度 DMF: 25 mg/ml,DMSO: 10 mg/ml,Ethanol: 1 mg/ml,PBS (pH 7.2): 5 mg/ml 储存条件 -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.8369 mL 14.1844 mL 28.3688 mL
5 mM 0.5674 mL 2.8369 mL 5.6738 mL
10 mM 0.2837 mL 1.4184 mL 2.8369 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Forced degradation of fentanyl: identification and analysis of impurities and degradants

J Pharm Biomed Anal 2010 Nov 2;53(3):325-34.PMID:20462721DOI:10.1016/j.jpba.2010.04.004.

Fentanyl, N-(1-phenethylpiperidin-4-yl)-N-phenylpropionamide is a rapid-acting, powerful opioid analgesic used extensively for anesthesia and chronic pain management. A forced degradation study of fentanyl active pharmaceutical ingredient (API) was performed using light, acid, base, heat and oxidation. Under acidic conditions, fentanyl was shown to degrade to N-phenyl-1-(2-phenylethyl)-piperidin-4-amine (PPA(1)). Fentanyl was stable to light exposure and base treatment with no degradation observed. Oxidation with hydrogen peroxide produced Fentanyl N-oxide by rapidly oxidizing the nitrogen on the piperidine ring. Five degradants were formed during thermal degradation of fentanyl. The two known degradants included propionanilide (PRP(2)) and norfentanyl (NRF(3)). The three unknown degradants were first identified by mass using LC/MS, and postulated compounds were synthesized and confirmed by LC/MS and (1)H NMR. These degradants were identified as 1-phenethylpyridinium salt (1-PEP(4)), 1-phenethyl-1H-pyridin-2-one (1-PPO(5)), and 1-styryl-1H-pyridin-2-one (1-SPO(6)). In addition to the seven degradants, three known process impurities, acetyl fentanyl, pyruvyl fentanyl and butyryl fentanyl were also detected by reverse-phase high performance liquid chromatography (HPLC) with UV detection. All degradants and impurities were identified and confirmed using authentic materials. Method validation was performed for the assay of fentanyl and its related compounds in accordance to ICH guideline Q2(R1), and the method was demonstrated to be specific, linear (r>0.999 for fentanyl assay and r>0.996 for related compounds), accurate (recovery>99.6% for fentanyl assay and recovery>91.0 for related compounds), precise (%RSD<0.8% for fentanyl assay and <4.8% for related compounds), sensitive (limit of detection=0.08 microg/mL or 0.016% of nominal concentration), robust and suitable for its intended use. The chemical structures for the degradants and impurities were submitted to three in silico toxicity programs to identify any structural alerts.