Home>>Signaling Pathways>> PROTAC>>(E)-TCO-PEG4-NHS ester

(E)-TCO-PEG4-NHS ester Sale

目录号 : GC67663

(E)-TCO-PEG4-NHS ester 是一种 PROTAC linker,属于 PEG 类。可用于合成 PROTAC 分子。

(E)-TCO-PEG4-NHS ester Chemical Structure

Cas No.:1621096-79-4

规格 价格 库存 购买数量
5mg
¥1,089.00
现货
25mg
¥3,289.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

(E)-TCO-PEG4-NHS ester is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs[1].

PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins[1].

[1]. Nalawansha DA, et al. PROTACs: An Emerging Therapeutic Modality in Precision Medicine. Cell Chem Biol. 2020;27(8):998-1013.

Chemical Properties

Cas No. 1621096-79-4 SDF Download SDF
分子式 C24H38N2O10 分子量 514.57
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.9434 mL 9.7169 mL 19.4337 mL
5 mM 0.3887 mL 1.9434 mL 3.8867 mL
10 mM 0.1943 mL 0.9717 mL 1.9434 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects

Cell 2014 Oct 9;159(2):318-32.PMID:25303528DOI:10.1016/j.cell.2014.09.035.

Increased adipose tissue lipogenesis is associated with enhanced insulin sensitivity. Mice overexpressing the Glut4 glucose transporter in adipocytes have elevated lipogenesis and increased glucose tolerance despite being obese with elevated circulating fatty acids. Lipidomic analysis of adipose tissue revealed the existence of branched fatty acid esters of hydroxy fatty acids (FAHFAs) that were elevated 16- to 18-fold in these mice. FAHFA isomers differ by the branched ester position on the hydroxy fatty acid (E.g., palmitic-acid-9-hydroxy-stearic-acid, 9-PAHSA). PAHSAs are synthesized in vivo and regulated by fasting and high-fat feeding. PAHSA levels correlate highly with insulin sensitivity and are reduced in adipose tissue and serum of insulin-resistant humans. PAHSA administration in mice lowers ambient glycemia and improves glucose tolerance while stimulating GLP-1 and insulin secretion. PAHSAs also reduce adipose tissue inflammation. In adipocytes, PAHSAs signal through GPR120 to enhance insulin-stimulated glucose uptake. Thus, FAHFAs are endogenous lipids with the potential to treat type 2 diabetes.

Omega-3 and cardiovascular prevention - Is this still a choice?

Pharmacol Res 2022 Aug;182:106342.PMID:35798287DOI:10.1016/j.phrs.2022.106342.

There is currently growing attention being paid to the role of elevated triglycerides (TGs) as important mediators of residual atherosclerotic cardiovascular disease (ASCVD) risk. This role is supported by genetic studies and by the persistent residual risk of ASCVD, even after intensive statin therapy. Although TG lowering drugs have shown conflicting results when tested in cardiovascular outcome trials, data from the REDUCE-IT study with the ethyl ester of ω-3 eicosapentaenoic acid (EPA) have revived hope in this area of research. The aim of the present review is to critically discuss the most recent large trials with ω-3 fatty acids (FAs) trying to elucidate mechanistic and trial-related differences, as in the case of REDUCE-IT and STRENGTH studies. The ω-3 FAs may lower cardiovascular risk through a number of pleiotropic mechanisms, E.g., by lowering blood pressure, by mediating antithrombotic effects, by providing precursors for the synthesis of specialized proresolving mediators that can inhibit inflammation or by modulating the lipid rafts enriched in cholesterol and sphingolipids. In conclusion, in a field fraught with uncertainties, the ω-3 FAs and especially high dose icosapent ethyl (the ethyl ester of EPA) are at present a most valuable therapeutic option to reduce the ASCVD risk.

Lactose esters: synthesis and biotechnological applications

Crit Rev Biotechnol 2018 Mar;38(2):245-258.PMID:28585445DOI:10.1080/07388551.2017.1332571.

Biodegradable nonionic sugar esters-based surfactants have been gaining more and more attention in recent years due to their chemical plasticity that enables the various applications of these molecules. In this review, various synthesis methods and biotechnological implications of lactose esters (LEs) uses are considered. Several chemical and enzymatic approaches are described for the synthesis of LEs, together with their applications, i.E. function in detergents formulation and as additives that not only stabilize food products but also protect food from undesired microbial contamination. Further, this article discusses medical applications of LEs in cancer treatment, especially their uses as biosensors, halogenated anticancer drugs, and photosensitizing agents for photodynamic therapy of cancer and photodynamic inactivation of microorganisms.

Prodrugs of the Archetypal Dynamin Inhibitor Bis-T-22

ChemMedChem 2022 Dec 16;17(24):e202200400.PMID:36351775DOI:10.1002/cmdc.202200400.

The Bis-T series of compounds comprise some of the most potent inhibitors of dynamin GTPase activity yet reported, E. g., (2E,2'E)-N,N'-(propane-1,3-diyl)bis(2-cyano-3-(3,4-dihydroxyphenyl)acrylamide) (2), Bis-T-22. The catechol moieties are believed to limit cell permeability, rendering these compounds largely inactive in cells. To solve this problem, a prodrug strategy was envisaged and eight ester analogues were synthesised. The shortest and bulkiest esters (acetate and butyl/tert-butyl) were found to be insoluble under physiological conditions, whilst the remaining five were soluble and stable under these conditions. These five were analysed for plasma stability and half-lives ranged from ∼2.3 min (propionic ester 4), increasing with size and bulk, to greater than 24 hr (dimethyl carbamate 10). Similar profiles where observed with the rate of formation of Bis-T-22 with half-lives ranging from ∼25 mins (propionic ester 4). Propionic ester 4 was chosen to undergo further testing and was found to inhibit endocytosis in a dose-dependent manner with IC50 ∼8 μM, suggesting this compound is able to effectively cross the cell membrane where it is rapidly hydrolysed to the desired Bis-T-22 parent compound.

Isopropenyl Esters (iPEs) in Green Organic Synthesis

Chemistry 2022 Jul 15;28(40):e202200431.PMID:35385201DOI:10.1002/chem.202200431.

The need for greener compounds able to replace conventional ones with similar reactivity is crucial for the development of sustainable chemistry. Isopropenyl esters (iPEs) represent one eco-friendly alternative to acyl halides and anhydrides. This review provides a comprehensive overview of the preparation methodologies and reported synthetic applications of iPEs and, in particular, of isopropenyl acetate (iPAc). Intriguingly, the presence of a C=C double bond adjacent to the ester functionality makes iPEs appealing in different chemoselective organic synthesis transformations. For instance, the acyl moiety is suitable for transesterification reactions in presence of different heteroatom-based nucleophiles (C-, O-, N-, S-, Se-); these reactions are irreversible thanks to the formation of acetone, obtained upon keto-enol tautomerization of the prop-1-en-2-ol (isopropenyl) leaving group. Similarly, the unsaturation contained in the isopropenyl synthon could be selectively exploited in organic synthesis for electrophilic and/or radical additions as well as in metal-catalyzed cross-coupling reactions. To conclude, iPEs recently found major interest in the direct modification of biomass (i.E. lignin or cellulose) and in the implementation of tandem reactions of esterification-acetalization by exploiting the co-formation of acetone during the reaction.