Home>>Signaling Pathways>> Metabolism>> P450>>Dihydromethysticin ((+)-Dihydromethysticin)

Dihydromethysticin ((+)-Dihydromethysticin) Sale

(Synonyms: 二氢麻醉椒素,(+)-Dihydromethysticin) 目录号 : GC30479

A kavalactone with diverse biological activities

Dihydromethysticin ((+)-Dihydromethysticin) Chemical Structure

Cas No.:19902-91-1

规格 价格 库存 购买数量
1mg
¥700.00
现货
5mg
¥1,750.00
现货
10mg
¥2,940.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Dihydromethysticin is a kavalactone originally isolated from P. methysticum (kava-kava) that has diverse biological activities, including efflux transporter inhibitory, antinociceptive, and neuroprotective properties.1,2 Dihydromethysticin is a P-glycoprotein (P-gp) inhibitor that increases uptake of the P-gp substrate calcein AM by 50% in P388 mouse leukemia cancer cells overexpressing P-gp when used at a concentration of 54.6 μM.3 Dihydromethysticin (275 mg/kg) has analgesic activity, increasing the latency to tail withdrawal in the tail-flick assay in mice.1 It also decreases the infarct size in a mouse model of ischemia induced by microbipolar coagulation of the left middle cerebral artery (MCA) when administered at a dose of 10 mg/kg.2

1.Jamieson, D.D., and Duffield, P.H.The antinociceptive actions of kava components in miceClin. Exp. Pharmacol. Physiol.17(7)495-507(1990) 2.Backhauβ, C., and Krieglstein, J.Extract of kava (Piper methysticum) and its methysticin constituents protect brain tissue against ischemic damage in rodentEur. J. Pharmacol.215(2-3)265-269(1992) 3.Weiss, J., Sauer, A., Frank, A., et al.Extracts and kavalactones of Piper methysticum G. Forst (kava-kava) inhibit P-glycoprotein in vitroDrug Metab. Dispos.33(11)1580-1583(2005)

Chemical Properties

Cas No. 19902-91-1 SDF
别名 二氢麻醉椒素,(+)-Dihydromethysticin
Canonical SMILES O=C1C=C(OC)C[C@H](CCC2=CC=C(OCO3)C3=C2)O1
分子式 C15H16O5 分子量 276.28
溶解度 Chloroform: soluble,Methanol: soluble 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.6195 mL 18.0976 mL 36.1952 mL
5 mM 0.7239 mL 3.6195 mL 7.239 mL
10 mM 0.362 mL 1.8098 mL 3.6195 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Characterization and identification of the metabolites of dihydromethysticin by ultra-high-performance liquid chromatography orbitrap high-resolution mass spectrometry

Dihydromethysticin, a natural component from Piper methysticum Forst, has been reported to display pharmacological effects in mental disorders and some malignant tumors. However, the metabolism of this component remained unknown. The goal of this work was conducted to discover the metabolic profiles of dihydromethysticin. The in vitro incubation was performed by incubating dihydromethysticin with rat, monkey, and human liver microsomes and hepatocytes. An analytical assay of ultra-high performance liquid chromatography combined with Orbitrap high-resolution mass spectrometry was utilized to detect and identify the metabolites. With high resolution mass spectrometric determination, the accurate mass, elemental composition, and product ions of the metabolites were determined, which enabled structural characterization to become easy. Under the present conditions, four phase-I metabolites, as well as six phase-II metabolites, were detected and their tentative structures were characterized by mass spectra. M4 was found as the most abundant metabolite both in liver microsomes and hepatocytes. Cytochrome P450 1A2, 2C9, and 3A4 contributed to the formation of this metabolite by using human recombinant P450 enzymes. M4 can be oxidized into reactive ortho-quinone intermediate followed by conjugating with glutathione. M4 was also subject to glucuronidation (M1 and M2) and methylation (M5). Demethylenation, oxidation, hydroxylation, glucuronidation, glutathionylation, and methylation were the primary metabolic pathways of dihydromethysticin. This study provides in vitro metabolism data of dihydromethysticin, which is indispensable for understanding the disposition of this compound.

Dihydromethysticin, a natural molecule from Kava, suppresses the growth of colorectal cancer via the NLRC3/PI3K pathway

Dihydromethysticin (DHM), a natural compound derived from Kava, has been reported to be effective against mental disorders and some malignant tumors. However, little is known about the inhibitory effect of DHM on colorectal cancer (CRC). First, we examined the impact of DHM on human colon cancer cell lines, which demonstrated that DHM inhibits proliferation, migration, and invasion and promotes apoptosis and cell cycle arrest in colon cancer cells in vitro. Using small hairpin RNA, we inhibited nucleotide-oligomerization domain-like receptor subfamily C3 (NLRC3)/phosphoinositide 3-kinase (PI3K) pathway to elucidate the partial signaling of DHM-mediated tumor suppression. Additionally, using an ectopic human CRC model, we verified whether DHM inhibits tumor growth and angiogenesis via the NLRC3/PI3K pathway in vivo. Overall, DHM showed an inhibitory effect on CRC by altering cell proliferation, migration, invasion, apoptosis, cell cycle, and angiogenesis, possibly via the NLRC3/PI3K pathway. Thus, DHM may be a promising candidate for CRC therapy.

Anticancer effects of 7,8-dihydromethysticin in human leukemia cells are mediated via cell-cycle dysregulation, inhibition of cell migration and invasion and targeting JAK/STAT pathway

The main focus of this research work was to study the anti-cancer properties of 7,8-dihydromethysticin against HL-60 leukemia cells. Investigations were also performed to check its impact on the phases of the cell cycle, cell migration and invasion, JAK/STAT signalling pathway and intracellular mitochondrial membrane potential (MMP) and reactive oxygen species (ROS). Cell proliferation was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and effects on colony formation were examined via clonogenic assay. Flow cytometry and Western blott analysis were performed to investigate the distribution of cell cycle phases. Flow cytometric analysis was performed for the examination of MMP and ROS production. The effect on JAK/STAT signalling pathway was examined through Western blot analysis. Results depicted that 7,8-dihydromethysticin induced concentration- as well as time-dependent inhibition of cell proliferation in leukemia HL-60 cells. Clonogenic assay indicated potential suppression in leukemia HL-60 cell colonies. The 7,8-dihydromethysticin molecule also caused cell cycle arrest at G2/M-phase along with concentration-dependent inhibition of cyclin B1, D1 and E. ROS and MMP measurements indicated significant ROS enhancement and MMP suppression with increasing 7,8-dihydromethysticin concentrations. Additionally, 7,8-dihydromethysticin led to remarkable dose-reliant inhibition of cell invasion as well as cell migration. Therefore, 7,8-dihydromethysticin should be considered a valuable candidate for leukemia research and chemoprevention.

Dihydromethysticin kavalactone induces apoptosis in osteosarcoma cells through modulation of PI3K/Akt pathway, disruption of mitochondrial membrane potential and inducing cell cycle arrest

The objective of the present study was to evaluate the tumor and apoptotic effects of dihydromethysticin kavalactone against human osteosarcoma (MG-63) cells. Antiproliferative activity was measured with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis induction by dihydromethysticin was demonstrated by fluorescence microscopy, quantitative videomicroscopy and Annexin V-FITC apoptosis detection kit. Mitochondrial membrane potential disruption was demonstrated by rhodamine-123 dye using flow cytometry. We also evaluated the effect of dihydromethysticin on PI3K/Akt pathway with an immunoblotting analysis. The results showed that the compound induced dose-dependent as well as time-dependent antiproliferative effects against MG-63 cell growth. Cell death and apoptotic body formation was noticed followed dihydromethysticin treatment at various doses. The percentage of apoptotic cells (early apoptosis+late apoptosis) increased from 6.63% in untreated control to 23.92%, 23.81% and 93.9% in 25 ?M, 75 ?M and 100 ? Mdihydromethysticin-treated cells respectively. Flow cytometric analysis showed dihydromethysticin induced an increase in G0/G1 cells (apoptotic cells). Furthermore, we observed mitochondrial transmembrane depolarization along with decreased phosphorylation levels for PI3K, AKT (Ser 473), AKT (Thr 308), GSK-3β, and BAD. These reductions were associated with down regulation of AKT and upregulation of both GSK-3β and BAD.

In vivo Structure-Activity Relationship of Dihydromethysticin in Reducing Nicotine-Derived Nitrosamine Ketone (NNK)-Induced Lung DNA Damage against Lung Carcinogenesis in A/J Mice

Lung cancer is the leading cause of cancer-related deaths and chemoprevention should be developed. We recently identified dihydromethysticin (DHM) as a promising candidate to prevent NNK-induced lung tumorigenesis. To probe its mechanisms and facilitate its future translation, we investigated the structure-activity relationship of DHM on NNK-induced DNA damage in A/J mice. Twenty DHM analogs were designed and synthesized. Their activity in reducing NNK-induced DNA damage in the target lung tissues was evaluated. The unnatural enantiomer of DHM was identified to be more potent than the natural enantiomer. The methylenedioxy functional moiety did not tolerate modifications while the other functional groups (the lactone ring and the ethyl linker) accommodated various modifications. Importantly, analogs of high structural similarity to DHM with distinct efficacy in reducing NNK-induced DNA damage have been identified. They will serve as chemical probes to elucidate the mechanisms of DHM in blocking NNK-induced lung carcinogenesis.