Home>>Signaling Pathways>> Others>> Xenobiotic Sensing>>Desmethyl Bosentan

Desmethyl Bosentan Sale

(Synonyms: 波生坦O-去甲基杂质) 目录号 : GC49174

An active metabolite of bosentan

Desmethyl Bosentan Chemical Structure

Cas No.:253688-61-8

规格 价格 库存 购买数量
500 µg
¥1,696.00
现货
1 mg
¥3,049.00
现货
5 mg
¥13,568.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Desmethyl bosentan is an active metabolite of the endothelin receptor antagonist bosentan .1 Desmethyl bosentan (25 µM) activates the pregnane X receptor (PXR) in CV-1 monkey kidney cells expressing the human receptor in a reporter assay.

1.van Giersbergen, P.L.M., Gnerre, C., Treiber, A., et al.Bosentan, a dual endothelin receptor antagonist, activates the pregnane X nuclear receptorBr. J. Clin. Pharmacol.54(5)561-562(2002)

Chemical Properties

Cas No. 253688-61-8 SDF
别名 波生坦O-去甲基杂质
Canonical SMILES O=S(NC1=NC(C2=NC=CC=N2)=NC(OCCO)=C1OC3=C(O)C=CC=C3)(C4=CC=C(C(C)(C)C)C=C4)=O
分子式 C26H27N5O6S 分子量 537.6
溶解度 Acetonitrile: soluble,DMSO: soluble,Methanol: soluble 储存条件 -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.8601 mL 9.3006 mL 18.6012 mL
5 mM 0.372 mL 1.8601 mL 3.7202 mL
10 mM 0.186 mL 0.9301 mL 1.8601 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Desmethyl Bosentan displays a similar in vitro interaction profile as bosentan

Pulm Pharmacol Ther 2015 Feb;30:80-6.PMID:25535031DOI:10.1016/j.pupt.2014.12.001.

The endothelin-1 receptor antagonists bosentan and ambrisentan used for the treatment of pulmonary arterial hypertension remarkably differ in their potential to act as perpetrators in pharmacokinetic drug-drug interactions. So far, it is not clear whether the metabolites of bosentan and ambrisentan contribute to the extent of drug interactions. We therefore investigated the effects of 4-hydroxymethyl ambrisentan, hydroxy bosentan, Desmethyl Bosentan, and hydroxy Desmethyl Bosentan on targets which are inhibited or induced by the parent compounds. The hydroxylated metabolites of ambrisentan and bosentan neither induced any of the genes investigated at the mRNA level, nor inhibited P-glycoprotein (P-gp) measured by calcein assay in L-MDR1 cells, and only weakly inhibited organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 measured by 8-fluorescein-cAMP uptake in HEK-OATP1B1 and HEK-OATP1B3 cells. In contrast, Desmethyl Bosentan induced mRNA expression of cytochrome P450 3A4 (CYP3A4, about 6-fold at 50 μM), ABCB1 (P-gp, about 4.5-fold at 50 μM), and ABCG2 (breast cancer resistance protein, about 2-fold at 50 μM), whereas CYP2C19, ABCB11, and ABCC2 (multidrug resistance-associated protein 2) were not induced in LS180 cells. In a reporter gene assay, Desmethyl Bosentan activated pregnane X receptor with the highest potency of all metabolites tested. Whereas Desmethyl Bosentan did not inhibit P-gp, it inhibited OATP1B1 with an IC50 of 3.8 μM (1.9-7.6) (geometric mean, 95% CI) and OATP1B3 with an IC50 of 7.4 μM (2.6-21.52). In conclusion, our data demonstrate that Desmethyl Bosentan exhibits a similar pharmacokinetic interaction profile as bosentan and might contribute to the inducing effects of the parent compound.

Development and validation of a fully automated online human dried blood spot analysis of bosentan and its metabolites using the Sample Card And Prep DBS System

J Chromatogr B Analyt Technol Biomed Life Sci 2012 Feb 15;885-886:50-60.PMID:22227055DOI:10.1016/j.jchromb.2011.12.012.

This paper describes the development and validation of a liquid chromatography (LC)-electrospray ionization tandem mass spectrometry assay for the fully automated simultaneous determination of bosentan, a dual endothelin receptor antagonist used in the treatment of pulmonary arterial hypertension, and its three primary metabolites hydroxy bosentan (Ro 48-5033), Desmethyl Bosentan (Ro 47-8634), and hydroxy Desmethyl Bosentan (Ro 64-1056) in human dried blood spots (DBS) by use of the Sample Card And Prep (SCAP) DBS System. The system enabled the online extraction of compounds from filter paper cards without the need for punching and sample pretreatment. This was realized by automatic introduction of DBS sample cards into the LC flow via a pneumatically controlled clamp module. Using a three-column setup comprised of two pre columns for successive online DBS sample cleanup and a Synergi™ POLAR-RP C(18) analytical column for chromatographic separation under gradient conditions with a mobile phase A consisting of 1% acetic acid and a mobile phase B consisting of 1% acetic acid in methanol/2-propanol (80/20, v/v). MS/MS detection was performed in the positive multiple reaction monitoring mode using a Sciex API 4000 triple quadrupole LC-MS/MS system equipped with a TurboIonSpray™ source. The total run time was 9.0min. The individual phases of online human DBS analysis were synchronized by automated valve switching. The analytical method was shown to be sensitive and selective with inter-day accuracy and precision of 91.6-108.0% and 3.4-14.6%, respectively, and it exhibited good linearity (r(2)≥0.9951 for all analytes) over the concentration range of 2ng/mL (5ng/mL for Ro 47-8634)-1500ng/mL. The analytes were stable in human DBS over 3.5 months at ambient temperature and accurate and precise results were obtained when using a blood spot volume between 20 and 30μL. Furthermore, no apparent (-8.9 to 12.6%) impact of hematocrit values ranging from 0.35 to 0.65 was observed on the quantification of the analytes. The system allowed very good recoveries of all analytes, between 83.0% and 92.3% for bosentan, between 94.4% and 100% for Ro 48-5033, between 98.0% and 100% for Ro 47-8634, and between 94.3% and 100% for Ro 64-1056. The validation demonstrated that the SCAP DBS System provides a robust automated platform for DBS analysis.

Ultraviolet photodissociation of protonated pharmaceuticals in a pressurized linear quadrupole ion trap

Rapid Commun Mass Spectrom 2010 Aug 15;24(15):2262-8.PMID:20623481DOI:10.1002/rcm.4633.

Ultraviolet photodissociation (UVPD) was evaluated as a technique for generating ion fragmentation information that is alternative and/or complementary to the information obtained by collision-induced dissociation (CID). Ions trapped in a pressurized linear ion trap were dissociated using a 355 nm or a 266 nm pulsed laser. Comparisons of UVPD and CID spectra using a set of aromatic chromophore-containing compounds (Desmethyl Bosentan, haloperidol, nelfinavir) demonstrated distinct characteristic fragmentation patterns resulting from photodissociation. The wavelength of light and the pressure of the buffer gas in the UVPD cell are important parameters that control fragmentation pathways. The wavelength effect is related to the absorption cross section, location of the chromophore and the energy carried by one photon. Thus, UV irradiation wavelength affects fragmentation pathways as well as the fragmentation rate. The pressure effect can be explained by collisional quenching of 'slow' fragmentation pathways. We observed that higher pressure of the buffer gas during UVPD experiments highlights unique fragment ions by suppressing slow fragmentation pathways responsible for CID-like fragmentation patterns.