Home>>DB1976

DB1976 Sale

目录号 : GC39627

DB1976 是一种 DB270 的硒烯类似物,是一种高效且可渗透细胞的转录因子 PU.1 的抑制剂。在体外,DB1976 有效抑制 PU.1 结合 (IC50 为 10 nM),可强烈抑制 PU.1/DNA 复合物 (具有高 DB1976-ΛB 亲和力,KD 为 12 nM)。DB1976 具有诱导细胞凋亡的作用。

DB1976 Chemical Structure

Cas No.:1557397-51-9

规格 价格 库存 购买数量
5mg
¥4,050.00
现货
10mg
¥6,750.00
现货
50mg
¥18,900.00
现货
100mg
¥26,550.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

101

客户使用产品发表文献 1

产品文档

Quality Control & SDS

View current batch:

产品描述

DB1976 is a selenophene analog of DB270 and a potent and cell-permeable fully efficacious transcription factor PU.1 inhibitor. DB1976 potently inhibits PU.1 binding (IC50 of 10 nM) and strongly inhibits the PU.1/DNA complex (with high DB1976-ΛB affinity, KD of 12 nM) in vitro. DB1976 has apoptosis-inducing effect[1][2][3].

[1]. Munde M, et al. Structure-dependent inhibition of the ETS-family transcription factor PU.1 by novel heterocyclic diamidines. Nucleic Acids Res. 2014 Jan;42(2):1379-90. [2]. Stephens DC, et al. Pharmacologic efficacy of PU.1 inhibition by heterocyclic dications: a mechanistic analysis. Nucleic Acids Res. 2016 May 19;44(9):4005-13. [3]. Antony-DebrÉ I, et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia. J Clin Invest. 2017 Dec 1;127(12):4297-4313.

Chemical Properties

Cas No. 1557397-51-9 SDF
Canonical SMILES N=C(C1=CC=C2N=C(C3=CC=C(C4=NC5=CC=C(C(N)=N)C=C5N4)[Se]3)NC2=C1)N
分子式 C20H16N8Se 分子量 447.35
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.2354 mL 11.1769 mL 22.3539 mL
5 mM 0.4471 mL 2.2354 mL 4.4708 mL
10 mM 0.2235 mL 1.1177 mL 2.2354 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Dissecting Dynamic and Hydration Contributions to Sequence-Dependent DNA Minor Groove Recognition

Biophys J 2020 Oct 6;119(7):1402-1415.PMID:32898478DOI:10.1016/j.bpj.2020.08.013.

Sequence selectivity is a critical attribute of DNA-binding ligands and underlines the need for detailed molecular descriptions of binding in representative sequence contexts. We investigated the binding and volumetric properties of DB1976, a model bis(benzimidazole)-selenophene diamidine compound with emerging therapeutic potential in acute myeloid leukemia, debilitating fibroses, and obesity-related liver dysfunction. To sample the scope of cognate DB1976 target sites, we evaluated three dodecameric duplexes spanning >103-fold in binding affinity. The attendant changes in partial molar volumes varied substantially, but not in step with binding affinity, suggesting distinct modes of interactions in these complexes. Specifically, whereas optimal binding was associated with loss of hydration water, low-affinity binding released more hydration water. Explicit-atom molecular dynamics simulations showed that minor groove binding perturbed the conformational dynamics and hydration at the termini and interior of the DNA in a sequence-dependent manner. The impact of these distinct local dynamics on hydration was experimentally validated by domain-specific interrogation of hydration with salt, which probed the charged axial surfaces of oligomeric DNA preferentially over the uncharged termini. Minor groove recognition by DB1976, therefore, generates dynamically distinct domains that can make favorable contributions to hydration release in both high- and low-affinity binding. Because ligand binding at internal sites of DNA oligomers modulates dynamics at the termini, the results suggest both short- and long-range dynamic effects along the DNA target that can influence their effectiveness as low-MW competitors of protein binding.

Inhibition of PU.1 ameliorates metabolic dysfunction and non-alcoholic steatohepatitis

J Hepatol 2020 Aug;73(2):361-370.PMID:32135178DOI:10.1016/j.jhep.2020.02.025.

Background & aims: Obesity is a well-established risk factor for type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH), but the underlying mechanisms remain incompletely understood. Herein, we aimed to identify novel pathogenic factors (and possible therapeutic targets) underlying metabolic dysfunction in the liver. Methods: We applied a tandem quantitative proteomics strategy to enrich and identify transcription factors (TFs) induced in the obese liver. We used flow cytometry of liver cells to analyze the source of the induced TFs. We employed conditional knockout mice, shRNA, and small-molecule inhibitors to test the metabolic consequences of the induction of identified TFs. Finally, we validated mouse data in patient liver biopsies. Results: We identified PU.1/SPI1, the master hematopoietic regulator, as one of the most upregulated TFs in livers from diet-induced obese (DIO) and genetically obese (db/db) mice. Targeting PU.1 in the whole liver, but not hepatocytes alone, significantly improved glucose homeostasis and suppressed liver inflammation. Consistently, treatment with the PU.1 inhibitor DB1976 markedly reduced inflammation and improved glucose homeostasis and dyslipidemia in DIO mice, and strongly suppressed glucose intolerance, liver steatosis, inflammation, and fibrosis in a dietary NASH mouse model. Furthermore, hepatic PU.1 expression was positively correlated with insulin resistance and inflammation in liver biopsies from patients. Conclusions: These data suggest that the elevated hematopoietic factor PU.1 promotes liver metabolic dysfunction, and may be a useful therapeutic target for obesity, insulin resistance/T2D, and NASH. Lay summary: Expression of the immune regulator PU.1 is increased in livers of obese mice and people. Blocking PU.1 improved glucose homeostasis, and reduced liver steatosis, inflammation and fibrosis in mouse models of non-alcoholic steatohepatitis. Inhibition of PU.1 is thus a potential therapeutic strategy for treating obesity-associated liver dysfunction and metabolic diseases.

Pharmacologic efficacy of PU.1 inhibition by heterocyclic dications: a mechanistic analysis

Nucleic Acids Res 2016 May 19;44(9):4005-13.PMID:27079976DOI:10.1093/nar/gkw229.

Heterocyclic dications are receiving increasing attention as targeted inhibitors of transcription factors. While many dications act as purely competitive inhibitors, some fail to displace protein efficiently at drug concentrations expected to saturate their DNA target. To achieve a mechanistic understanding of these non-competitive effects, we used a combination of dications, which are intrinsically fluorescent and spectrally-separated fluorescently labeled DNA to dissect complex interactions in multi-component drug/DNA/protein systems. Specifically, we interrogated site-specific binding by the transcription factor PU.1 and its perturbation by DB270, a furan-bisbenzimidazole-diamidine that strongly targets PU.1 binding sites yet poorly inhibits PU.1/DNA complexes. By titrating DB270 and/or cyanine-labeled DNA with protein or unlabeled DNA, and following the changes in their fluorescence polarization, we found direct evidence that DB270 bound protein independently of their mutual affinities for sequence-specific DNA. Each of the three species competed for the other two, and this interplay of mutually dependent equilibria abrogated DB270's inhibitory activity, which was substantively restored under conditions that attenuated DB270/PU.1 binding. PU.1 binding was consistent with DB270's poor inhibitory efficacy of PU.1 in vivo, while its isosteric selenophene analog (DB1976), which did not bind PU.1 and strongly inhibited the PU.1/DNA complex in vitro, fully antagonized PU.1-dependent transactivation in vivo.

Airway and parenchyma transcriptomics in a house dust mite model of experimental asthma

Respir Res 2023 Jan 25;24(1):32.PMID:36698141DOI:10.1186/s12931-022-02298-x.

Lung transcriptomics studies in asthma have provided valuable information in the whole lung context, however, deciphering the individual contributions of the airway and parenchyma in disease pathogenesis may expedite the development of novel targeted treatment strategies. In this study, we performed transcriptomics on the airway and parenchyma using a house dust mite (HDM)-induced model of experimental asthma that replicates key features of the human disease. HDM exposure increased the expression of 3,255 genes, of which 212 were uniquely increased in the airways, 856 uniquely increased in the parenchyma, and 2187 commonly increased in both compartments. Further interrogation of these genes using a combination of network and transcription factor enrichment analyses identified several transcription factors that regulate airway and/or parenchymal gene expression, including transcription factor EC (TFEC), transcription factor PU.1 (SPI1), H2.0-like homeobox (HLX), metal response element binding transcription factor-1 (MTF1) and E74-like factor 4 (ets domain transcription factor, ELF4) involved in controlling innate immune responses. We next assessed the effects of inhibiting lung SPI1 responses using commercially available DB1976 and DB2313 on key disease outcomes. We found that both compounds had no protective effects on airway inflammation, however DB2313 (8 mg/kg) decreased mucus secreting cell number, and both DB2313 (1 mg/kg) and DB1976 (2.5 mg/kg and 1 mg/kg) reduced small airway collagen deposition. Significantly, both compounds decreased airway hyperresponsiveness. This study demonstrates that SPI1 is important in HDM-induced experimental asthma and that its pharmacological inhibition reduces HDM-induced airway collagen deposition and hyperresponsiveness.

PU.1 inhibition attenuates atrial fibrosis and atrial fibrillation vulnerability induced by angiotensin-II by reducing TGF-β1/Smads pathway activation

J Cell Mol Med 2021 Jul;25(14):6746-6759.PMID:34132026DOI:10.1111/jcmm.16678.

Fibrosis serves a critical role in driving atrial remodelling-mediated atrial fibrillation (AF). Abnormal levels of the transcription factor PU.1, a key regulator of fibrosis, are associated with cardiac injury and dysfunction following acute viral myocarditis. However, the role of PU.1 in atrial fibrosis and vulnerability to AF remain unclear. Here, an in vivo atrial fibrosis model was developed by the continuous infusion of C57 mice with subcutaneous Ang-II, while the in vitro model comprised atrial fibroblasts that were isolated and cultured. The expression of PU.1 was significantly up-regulated in the Ang-II-induced group compared with the sham/control group in vivo and in vitro. Moreover, protein expression along the TGF-β1/Smads pathway and the proliferation and differentiation of atrial fibroblasts induced by Ang-II were significantly higher in the Ang-II-induced group than in the sham/control group. These effects were attenuated by exposure to DB1976, a PU.1 inhibitor, both in vivo and in vitro. Importantly, in vitro treatment with small interfering RNA against Smad3 (key protein of TGF-β1/Smads signalling pathway) diminished these Ang-II-mediated effects, and the si-Smad3-mediated effects were, in turn, antagonized by the addition of a PU.1-overexpression adenoviral vector. Finally, PU.1 inhibition reduced the atrial fibrosis induced by Ang-II and attenuated vulnerability to AF, at least in part through the TGF-β1/Smads pathway. Overall, the study implicates PU.1 as a potential therapeutic target to inhibit Ang-II-induced atrial fibrosis and vulnerability to AF.