Home>>Labeling & Detection>> Fluorescence>>Coelenterazine 400a

Coelenterazine 400a

(Synonyms: 腔肠素400A,Bisdeoxycoelenterazine) 目录号 : GC43290

A bisdeoxy derivative of coelenterazine

Coelenterazine 400a Chemical Structure

Cas No.:70217-82-2

规格 价格 库存 购买数量
500μg
¥1,247.00
现货
1mg
¥2,245.00
现货
5mg
¥8,732.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Coelenterazine 400a is a bisdeoxy derivative of coelenterazine that displays an emission maximum of 395 nm following conversion by Renilla luciferase (Rluc). It is used in bioluminescence resonance energy transfer 2 (BRET2) protocols, whereas coelenterazine h , which displays an emission maximum of 475 nm upon conversion by Rluc, is used in BRET1 protocols. Coelenterazine 400a is commonly paired with class 1 and 3 GFP acceptors, including GFP2 and GFP10. BRET2 assays are commonly used in evaluating protein-protein interactions, including those involved in G protein-coupled receptor signaling.

Chemical Properties

Cas No. 70217-82-2 SDF
别名 腔肠素400A,Bisdeoxycoelenterazine
Canonical SMILES O=C1C(CC2=CC=CC=C2)=NC3=C(CC4=CC=CC=C4)NC(C5=CC=CC=C5)=CN31
分子式 C26H21N3O 分子量 391.5
溶解度 1mg/mL in DMSO, Ethanol: 0.5 mg/mL, Methanol: 0.5 mg/mL 储存条件 Store at -20°C,protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.5543 mL 12.7714 mL 25.5428 mL
5 mM 0.5109 mL 2.5543 mL 5.1086 mL
10 mM 0.2554 mL 1.2771 mL 2.5543 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Bioluminescence measurements in mice using a skin window

J Biomed Opt 2007 Sep-Oct;12(5):054012.PMID:17994900DOI:10.1117/1.2795567.

Studies of bioluminescence in living animals, such as cell-based biosensor applications, require measurement of light at different wavelengths, but accurate light measurement is impeded by absorption by tissues at wavelengths<600 nm. We present a novel approach to this problem--the use of a plastic window in the skin/body wall of mice--that permits measurements of light produced by bioluminescent cells transplanted into the kidney. The cells coexpressed firefly luciferase (FLuc), a vasopressin receptor--Renilla luciferase (RLuc) fusion protein, and a GFP2-beta-arrestin2 fusion protein. Following coadministration of two luciferase substrates, native coelenterazine and luciferin, bioluminescence is measured via the window using fiber optics and a photon counter. Light emission from the two different luciferases, FLuc and RLuc, is readily distinguishable using appropriate optical filters. When Coelenterazine 400a is administered, bioluminescence resonance energy transfer (BRET) occurs between the RLuc and GFP2 fusion proteins and is detected by the use of suitable filters. Following intraperitoneal injection of vasopressin, there is a marked increase in BRET. When rapid and accurate measurement of light from internal organs is required, rather than spatial imaging of bioluminescence, the combination of skin/body wall window and fiber optic light measurement will be advantageous.

Direct comparison of bioluminescence-based resonance energy transfer methods for monitoring of proteolytic cleavage

Anal Biochem 2009 Feb 15;385(2):194-202.PMID:19026607DOI:10.1016/j.ab.2008.10.040.

Bioluminescence resonance energy transfer (BRET) is a powerful tool for the study of protein-protein interactions and conformational changes within proteins. Two common implementations of BRET are BRET(1) with Renilla luciferase (RLuc) and coelenterazine h (CLZ, lambda(em) approximately 475 nm) and BRET(2) with the substrate Coelenterazine 400a (CLZ400A substrate, lambda(em)=395 nm) as the respective donors. For BRET(1) the acceptor is yellow fluorescent protein (YFP) (lambda(em) approximately 535 nm), a mutant of green fluorescent protein (GFP), and for BRET(2) it is GFP(2) (lambda(em) approximately 515 nm). It is not clear from previous studies which of these systems has superior signal-to-background characteristics. Here we directly compared BRET(1) and BRET(2) by placing two different protease-specific cleavage sequences between the donor and acceptor domains. The intact proteins simulate protein-protein association. Proteolytic cleavage of the peptide linker simulates protein dissociation and can be detected as a change in the BRET ratios. Complete cleavage of its target sequence by thrombin changed the BRET(2) ratio by a factor of 28.9+/-0.2 (relative standard deviation [RSD], n=3) and changed the BRET(1) ratio by a factor of 3.05+/-0.07. Complete cleavage of a caspase-3 target sequence resulted in the BRET ratio changes by factors of 15.45+/-0.08 for BRET(2) and 2.00+/-0.04 for BRET(1). The BRET(2) assay for thrombin was 2.9 times more sensitive compared with the BRET(1) version. Calculated detection limits (blank signal+3sigma(b), where sigma(b)=standard deviation [SD] of blank signal) were 53 pM (0.002 U) thrombin with BRET(1) and 15 pM (0.0005 U) thrombin with BRET(2). The results presented here suggest that BRET(2) is a more suitable system than BRET(1) for studying protein-protein interactions and as a potential sensor for monitoring protease activity.

Direct comparison of fluorescence- and bioluminescence-based resonance energy transfer methods for real-time monitoring of thrombin-catalysed proteolytic cleavage

Biosens Bioelectron 2009 Jan 1;24(5):1164-70.PMID:18723336DOI:10.1016/j.bios.2008.07.021.

In this study, a representative FRET system (CFP donor and YFP acceptor) is compared with the BRET(2) system (Renilla luciferase donor, green fluorescent protein(2) (GFP(2)) acceptor and Coelenterazine 400a substrate). Cleavage of a thrombin-protease-sensitive peptide sequence inserted between the donor and acceptor proteins was detected by the RET signal. Complete cleavage by thrombin changed the BRET(2) signal by a factor of 28.9+/-0.2 (R.S.D. (relative standard deviation), n=3) and the FRET signal by a factor of 3.2+/-0.1 (R.S.D., n=3). The BRET(2) technique was 50 times more sensitive than the FRET technique for monitoring thrombin concentrations. Detection limits (blank signal+3sigma(b), where sigma(b)=the standard deviation (S.D.) of the blank signal) were calculated to be 3.05 and 0.22nM thrombin for FRET and BRET(2), respectively. This direct comparison suggests that the BRET(2) technique is more suitable than FRET for use in proximity assays such as protease cleavage assays or protein-protein interaction assays.