Home>>Signaling Pathways>> Cancer Biology>>cis-10-Heptadecenoic Acid

cis-10-Heptadecenoic Acid Sale

(Synonyms: 顺式-10-十七烯酸) 目录号 : GC41578

A monounsaturated fatty acid

cis-10-Heptadecenoic Acid Chemical Structure

Cas No.:29743-97-3

规格 价格 库存 购买数量
50mg
¥438.00
现货
100mg
¥832.00
现货
250mg
¥1,421.00
现货
500mg
¥1,890.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

cis-10-Heptadecenoic acid is a C17:1 monounsaturated fatty acid that is a minor constituent of ruminant fats. It has been examined for potential antitumor activity and was reported to inhibit HL-60 cell proliferation with an IC50 value of 302 µM and to prevent LPS-induced tumor necrosis factor production from mouse macrophages.

Chemical Properties

Cas No. 29743-97-3 SDF
别名 顺式-10-十七烯酸
Canonical SMILES OC(CCCCCCCC/C=C\CCCCCC)=O
分子式 C17H32O2 分子量 268.4
溶解度 DMF: 30 mg/mL,DMSO: 30 mg/mL,Ethanol: 30 mg/mL,Ethanol:PBS (pH7.2) (1:7): 0.25 mg/mL 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.7258 mL 18.6289 mL 37.2578 mL
5 mM 0.7452 mL 3.7258 mL 7.4516 mL
10 mM 0.3726 mL 1.8629 mL 3.7258 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Fat content and fatty acid compositions of 34 marine water fish species from the Mediterranean Sea

Int J Food Sci Nutr 2009 Sep;60(6):464-75.PMID:18972241DOI:10.1080/09637480701838175.

Fish is the best source of polyunsaturated fatty acids (PUFA), specifically n-3 fatty acids, especially eicosapentaenoic acid and docosahexaenoic acid. The objective of the present study was to determine the fat content and fatty acid compositions of 34 marine water fish species from the Mediterranean Sea. The fatty acid compositions of fish consisted of 30.10-46.88% saturated fatty acids, 11.83-38.17% monounsaturated fatty acids and 20.49-49.31% PUFA. In most species, the following fatty acids were identified: mystiric acid (C14:0, 0.72-8.09%), pentadecanoic acid (15:0, 0.05-2.35%), palmitic acid (C16:0, 15.97-31.04%), palmitoleic acid (C16:1, 1.48-19.61%), heptadecanoic acid (C17:0, 0.31-1.84%), cis-10-Heptadecenoic Acid (C17:1, 0.17-2.01%), stearic acid (C18:0, 2.79-11.20%), oleic acid (C18:1n9, 2.44-28.97%), linoleic acid (C18:2n-6, 0.06-3.48%), arachidonic acid (C20:4n-6, 0.12-10.72%), cis-5,8,11,14,17-eicosapentaenoic acid (C20:5n-3, 1.94-10%) and cis-4,7,10,13,16,19-docosahexaenoic acid (C22:6n-3, 3.31-31.03%). The proportions of n-3 PUFA ranged from 12.66% for annular seabream to 36.54% for European hake, whereas the proportions of PUFA n-6 were between 1.24% for oceanic puffer and 12.76% for flathead mullet. The results of this study show that these fish species were rich in n-3 PUFA, especially, eicosapentaenoic acid and docosahexaenoic acid.

Acyl-Lipid Δ6-Desaturase May Act as a First FAD in Cyanobacteria

Biomolecules 2022 Dec 1;12(12):1795.PMID:36551223DOI:10.3390/biom12121795.

Fatty acid desaturases (FADs) play important roles in various metabolic and adaptive pathways in all living organisms. They represent a superfamily of oxygenases that introduce double bonds into the acyl chains of fatty acids (FAs). These enzymes are highly specific to the length of the carbon chain, position of double bonds formation, etc. The modes by which FADs "count" the position of the double bond formation may differ. In cyanobacteria, the first double bond is formed between 9th and 10th carbons (position Δ9), counting from the carboxylic end of an FA. Other FADs that produce polyunsaturated FAs may introduce double bonds counting from the carboxyl (Δ) or methyl (ω) terminus, or from a pre-existing double bond towards carboxyl or methyl terminus of an FA chain. Here, we expressed the desD gene for the Δ6-FAD from Synechocystis sp. PCC 6803 in Synechococcus elongatus PCC 7942 (which is capable of synthesizing only monoenoic FAs desaturated mainly at position Δ9) and observed the appearance of unusual monoenoic FAs desaturated at position Δ6, as well as Δ6,9 dienoic FAs. Exogenously added cis-10-Heptadecenoic Acid (17:1Δ10) was converted into cis-6,10-heptadecadienoic (17:2Δ6,10). These data demonstrate the ability of Δ6-FAD to introduce the first double bond into the unsaturated substrates and suggests that it "counts" from the carboxyl end, irrespective of the absence or presence of a previous double bond in an FA chain.

Rare biscoumarin derivatives and flavonoids from Hypericum riparium

Phytochemistry 2014 Sep;105:171-7.PMID:24930002DOI:10.1016/j.phytochem.2014.05.008.

Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae. Chemical investigation of the methanol extract of the stem bark of H. riparium led to the isolation of four natural products, 7,7'-dihydroxy-6,6'-biscoumarin (1), 7,7'-dihydroxy-8,8'-biscoumarin (2), 7-methoxy-6,7'-dicoumarinyl ether (3), 2'-hydroxy-5'-(7″-methoxycoumarin-6″-yl)-4'-methoxyphenylpropanoic acid (4), together with one known 7,7'-dimethoxy-6,6'-biscoumarin (5), two flavones, 2'-methoxyflavone (6) and 3'-methoxy flavone (7), and two steroids, stigmast-4-en-3-one (8) and ergosta-4,6,8,22-tetraen-3-one (9). In addition, tetradecanoic acid (10), n-pentadecanoic acid (11), hexadecanoic acid (12), cis-10-Heptadecenoic Acid (13), octadecanoic acid (14) campesterol (15), stigmasterol (16), β-sitosterol (17), stigmastanol (18), β-eudesmol (19), 1-hexadecanol (20), and 1-octadecanol (21) were identified by GC-MS analysis. Compound 4 consists of a phenylpropanoic acid derivative fused with a coumarin unit, while compounds 2 and 3 are rare members of C8-C8' and C7-O-C6 linked biscoumarins. Their structures were elucidated by UV, IR, extensive 1D- and 2D-NMR experiments and electrospray (ESI) high resolution mass spectrometry (MS) including detailed MS/MS studies. This is the first report on the isolation of biscoumarins from the genus Hypericum, although simple coumarin derivatives have been reported from this genus in the literature. The cytotoxic activities of compounds 2-5 were evaluated against the human prostate cancer cell line PC-3 and the colon cancer cell line HT-29. They do not exhibit any significant cytotoxic activity.

Hepatoprotective and Antioxidant Potential of Phenolics-Enriched Fraction of Anogeissus acuminata Leaf against Alcohol-Induced Hepatotoxicity in Rats

Med Sci (Basel) 2022 Mar 4;10(1):17.PMID:35323216DOI:10.3390/medsci10010017.

Anogeissus acuminata is used to treat wounds, diarrhoea, dysentery, and skin ailments. However, its hepatoprotective effect against ethanol-induced liver damage is yet to be reported. The phenolic-enriched ethyl acetate fraction of Anogeissus acuminata (AAE) was evaluated for hepatoprotective activity against ethanol-induced liver toxicity in rats. The intoxicated animals were treated with a phenolic-rich fraction of Anogeissus acuminata (AAE) (100 and 200 mg/kg) and silymarin (100 mg/kg). The antioxidant activity of AAE was analysed. Biochemical markers (ALT, AST, ALP, GGT, and TBL) for liver injury in ethanol-administered animals resulted in higher levels of key serum biochemical injury markers, as evidenced by increased levels of ALT (127.24 ± 3.95), AST (189.54 ± 7.56), ALP (263.88 ± 12.96), GGT (91.65 ± 3.96), and TBL (2.85 ± 0.12) compared to Group I ALT (38.67 ± 3.84), AST (64.45 ± 5.97), GGT (38.67 ± 3.84), and TBL (0.53 ± 064) (p < 0.05). AAE administration decreased serum biochemical liver injury markers as manifested in Group III animals’ ALT (79.56 ± 5.16), AST (151.76 ± 6.16), ALP (184.67 ± 10.12), GGT (68.24 ± 4.05), TBL (1.66 ± 0.082) (p < 0.05), and Group IV ALT (55.54 ± 4.35), AST (78.79 ± 4.88), ALP (81.96 ± 9.43), GGT (47.32 ± 2.95), TBL (0.74 ± 0.075) (p < 0.05). Group IV exhibited the most significant reduction in serum biochemical markers as compared to Group III (p < 0.05) and close to silymarin-treated Group V ALT (44.42 ± 3.15), AST (74.45 ± 5.75), ALP (67.32 ± 9.14), GGT (42.43 ± 2.54), TBL (0.634 ± 0.077). Gene expression indices and histoarchitecture were evaluated to demonstrate the potential of AAE. The bioactive fraction of Anogeissus acuminata was rich in phenolics and flavonoid content. GC−MS analysis identified gallic acid, palmitic acid, cis-10-Heptadecenoic Acid, 9-octadecenoic acid, epigallocatechin, 2,5-dihydroxyacetophenone, and catechin. Oral administration of AAE (100 and 200 mg/kg) lowered the elevated levels of the biochemical markers and interleukin, and enhanced the level of enzymatic antioxidant. It also downregulated the expression level of proapoptotic genes and upregulated the expression level of the antiapoptotic gene along with improved liver histopathology.

Possible involvement of long chain fatty acids in the spores of Ganoderma lucidum (Reishi Houshi) to its anti-tumor activity

Biol Pharm Bull 2008 Oct;31(10):1933-7.PMID:18827358DOI:10.1248/bpb.31.1933.

During our isolation of biologically active substances from the spores of Ganoderma lucidum (Reishi Houshi, G. lucidum) guided by the inhibitory activity on HL-60 cell proliferation, NMR spectroscopic and mass spectrometric data indicate the substance contains a mixture of several long chain fatty acids. Hence, in this study, we have examined the inhibitory effects of an ethanolic extract of the spores of G. lucidum as the spore extract, on the proliferation of various human cancer cell lines by comparison with several authentic long chain fatty acids. Of the fatty acids we examined nonadecanoic acid (C19:0) showed the highest inhibitory activity for HL-60 cell proliferation with IC(50) values of 68+/-7 microM followed by heptadecanoic acid (C17:0, 120+/-23 microM), octa- (C18:0, 127+/-4 microM) and hexadecanoic acids (C16:0, 132+/-25 microM), respectively. The corresponding unsaturated fatty acids containing one double bond such as cis-10-nonadecenoic acid (C19:1), cis-9-octadecenoic acid (C18:1), cis-10-Heptadecenoic Acid (C17:1) and cis-9-hexadecenoic acid (C16:1) were less effective. The ethanolic extract of spores of G. lucidum were shown by annexin-V FITC/PI double staining to induce apoptosis of HL-60 cells in a similar way to cis-10-nonadecenoic acid (C19:1). These unsaturated fatty acids probably inhibit tumor necrosis factor production induced by lipopolysaccharide in a mouse macrophage preparation. Our results suggest the spores of G. lucidum contain 19-carbon fatty acids as one of the components for characteristics of its physiological effects.