Home>>Signaling Pathways>> Immunology/Inflammation>>CAY10502

CAY10502

目录号 : GC43161

A potent inhibitor of cPLA2α

CAY10502 Chemical Structure

Cas No.:888320-29-4

规格 价格 库存 购买数量
500μg
¥462.00
现货
1mg
¥873.00
现货
5mg
¥3,701.00
现货
10mg
¥6,476.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Phospholipase A2 (PLA2) catalyzes the hydrolysis of phospholipids at the sn-2 position leading to the production of lysophospholipids and free fatty acids. Calcium-dependent cytosolic PLA2 (cPLA2α) is a 85 kDa enzyme that plays a key role in the arachidonic cascade and the inflammatory response associated with this metabolic pathway. CAY10502 is a potent inhibitor of calcium-dependent cytosolic PLA2α (cPLA2α) with an IC50 value of 4.3 nM for the purified enzyme from human platelets. It inhibits arachidonic acid mobilization from A23187-stimulated or TPA-stimulated human platelets with IC50 values of 570 and 0.9 nM, respectively.

Chemical Properties

Cas No. 888320-29-4 SDF
Canonical SMILES O=C(COC1=CC=C(OCCCCCCCCCC)C=C1)CN2C3=CC=C(C(O)=O)C=C3C(C(OC)=O)=C2
分子式 C30H37NO7 分子量 523.6
溶解度 DMF: 20 mg/ml,DMF:PBS (pH 7.2)(1:1): 0.5 mg/ml,DMSO: 10 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.9099 mL 9.5493 mL 19.0985 mL
5 mM 0.382 mL 1.9099 mL 3.8197 mL
10 mM 0.191 mL 0.9549 mL 1.9099 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

S1PR2 antagonist alleviates oxidative stress-enhanced brain endothelial permeability by attenuating p38 and Erk1/2-dependent cPLA2 phosphorylation

Cell Signal 2019 Jan;53:151-161.PMID:30290210DOI:10.1016/j.cellsig.2018.09.019.

Both sphingosine-1-phosphate receptor-2 (S1PR2) and cytosolic phospholipase A2 (cPLA2) are implicated in the disruption of cerebrovascular integrity in experimental stroke. However, the role of S1PR2 in induction of cPLA2 phosphorylation during cerebral ischemia-induced endothelial dysfunction remains unknown. This study investigated the effect of S1PR2 blockade on oxidative stress-induced cerebrovascular endothelial barrier impairment and explored the possible mechanisms. In bEnd3 cells, cPLA2 inhibitor CAY10502 as well as S1PR2 antagonist JTE013 profoundly suppressed hydrogen peroxide (H2O2)-induced changes of paracellular permeability and ZO-1 localization. Besides p38, extracellular signal-regulated kinase (Erk) 1/2 is required for H2O2-increased cPLA2 phosphorylation and endothelial permeability. Pharmacological and genetic inhibition of S1PR2 significantly suppressed their phosphorylation in response to H2O2. Especially lentivirus-mediated knockdown of S1PR2 inhibited H2O2-induced ZO-1 redistribution and paracellular hyperpermeability. Using the permanent middle cerebral artery occlusion (pMCAO) mouse model, we found JTE013 pretreatment markedly reduced Evans blue dye (EBD) extravasation and reversed the decrease in VE-cadherin, occludin, claudin-5 and CD31 expression in infarcted hemisphere. Lentivirus-mediated S1PR2 knockdown also attenuated EBD extravasation. Furthermore, JTE013 pretreatment attenuated neurological deficit, brain edema and infarction volume. Therefore, our findings suggest the protective effect of JTE013 on brain endothelial barrier integrity is likely mediated by suppressing p38 and Erk1/2-dependent cPLA2 phosphorylation under oxidative stress.

Role of cytosolic phospholipase A(2) in retinal neovascularization

Invest Ophthalmol Vis Sci 2010 Feb;51(2):1136-42.PMID:19661235DOI:10.1167/iovs.09-3691.

Purpose: To identify and characterize the role of cytosolic phospholipase A(2) (cPLA(2)) in retinal angiogenesis using relevant cell-based assays and a rodent model of retinopathy of prematurity. Methods: The phosphorylation states of cPLA(2) and p38 MAP kinase and the expression of COX-2 were assessed by Western blot analysis in rat Müller cells. The activities of PLA(2) enzymes in rat retinal lysates were assessed using a commercially available assay. Prostaglandin E(2) (PGE(2)) and VEGF levels in Müller cell-conditioned medium and in retinal tissue samples were measured by ELISA. Rat retinal microvascular endothelial cell proliferation was measured using a BrdU assay. Efficacy of the cPLA(2) inhibitor CAY10502 was tested using the rat model of oxygen-induced retinopathy (OIR) in which neovascularization (NV) was assessed by computer-assisted image analysis. Results: In Müller cells, hypoxia increased the phosphorylation of cPLA(2) and p38 MAP kinase by 4-fold and 3-fold respectively. The cPLA(2) inhibitor CAY10502 decreased hypoxia-induced PGE(2) and VEGF levels in Müller cell-conditioned medium by 68.6% (P < 0.001) and 46.6% (P < 0.001), respectively. Retinal cPLA(2) activity peaked 1 day after oxygen exposure in OIR rats. CAY10502 (250 nM) decreased OIR-induced retinal PGE(2) and VEGF levels by 69% (P < 0.001) and 40.2% (P < 0.01), respectively. Intravitreal injection of 100 nM CAY10502 decreased retinal NV by 53.1% (P < 0.0001). Conclusions: cPLA(2) liberates arachidonic acid, the substrate for prostaglandin (PG) production by the cyclooxygenase enzymes. PGs can exert a proangiogenic influence by inducing VEGF production and by stimulating angiogenic behaviors in vascular endothelial cells. Inhibition of cPLA(2) inhibits the production of proangiogenic PGs. Thus, cPLA(2) inhibition has a significant influence on pathologic retinal angiogenesis.

Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway

Cell Calcium 2014 Jan;55(1):48-58.PMID:24360572DOI:10.1016/j.ceca.2013.11.002.

Extremely low-frequency electromagnetic fields (ELF-EMF) causes various biological effects through altering intracellular calcium homeostasis. The role of high voltage-gated (HVA) calcium channels in ELF-EMF induced effects has been extensively studied. However, the effect of ELF-EMF on low-voltage-gated (LVA) T-type calcium channels has not been reported. In this study, we test the effect of ELF-EMF (50Hz) on human T-type calcium channels transfected in HEK293 cells. Conversely to its stimulant effects on HVA channels, ELF-EMF exposure inhibited all T-type (Cav3.1, Cav3.2 and Cav3.3) channels. Neither the protein expression nor the steady-state activation and inactivation kinetics of Cav3.2 channels were altered by ELF-EMF (50Hz, 0.2mT) exposure. Exposure to ELF-EMF increased both arachidonic acid (AA) and leukotriene E4 (LTE4) levels in HEK293 cells. CAY10502 and bestatin, which block the increase of AA and LTE4 respectively, abrogated the ELF-EMF inhibitory effect on Cav3.2 channels. Exogenous LTE4 mimicked the ELF-EMF inhibition of T-type calcium channels. ELF-EMF (50Hz) inhibits native T-type calcium channels in primary cultured mouse cortical neurons via LTE4. We conclude that 50Hz ELF-EMF inhibits T-type calcium channels through AA/LTE4 signaling pathway.