Home>>Signaling Pathways>> Neuroscience>>BTC (potassium salt)

BTC (potassium salt) Sale

目录号 : GC42984

A fluorescent calcium indicator

BTC (potassium salt) Chemical Structure

Cas No.:216453-54-2

规格 价格 库存 购买数量
1mg
¥3,854.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

BTC is a low affinity calcium indicator (Kd = 7-26 µM) that displays excitation/emission spectra of 401/529 nm, respectively. It exhibits a shift in the excitation maximum from approximately 480 to 401 nm upon calcium binding, enabling determination of ratiometric calcium measurements. BTC is suitable for detecting elevated calcium levels associated with activation of smooth muscle, neurons, and intracellular calcium stores.

Chemical Properties

Cas No. 216453-54-2 SDF
Canonical SMILES O=C(C(C1=NC2=C(C=CC=C2)S1)=C3)OC4=C3C=C(OCCOC5=C(N(CC([O-])=O)CC([O-])=O)C=CC(C)=C5)C(N(CC([O-])=O)CC([O-])=O)=C4.[K+].[K+].[K+].[K+]
分子式 C33H25N3O12S•4K 分子量 844
溶解度 Water: Soluble 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.1848 mL 5.9242 mL 11.8483 mL
5 mM 0.237 mL 1.1848 mL 2.3697 mL
10 mM 0.1185 mL 0.5924 mL 1.1848 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Competitive transport processes of chloride, sodium, potassium, and ammonium in fen peat

J Contam Hydrol 2018 Oct;217:17-31.PMID:30201556DOI:10.1016/j.jconhyd.2018.08.004.

There is sparse information on reactive solute transport in peat; yet, with increasing development of peatland dominated landscapes, purposeful and accidental contaminant releases will occur, so it is important to assess their mobility. Previous experiments with peat have only evaluated single-component solutions, such that no information exists on solute transport of potentially competitively adsorbing ions to the peat matrix. Additionally, recent studies suggest chloride (Cl-) might not be conservative in peat, as assumed by many past peat solute transport studies. Based on measured and modelled adsorption isotherms, this study illustrates concentration dependent adsorption of Cl- to peat occurred in equilibrium adsorption batch (EAB) experiments, which could be described with a Sips isotherm. However, Cl- adsorption was insignificant for low concentrations (<500 mg L-1) as used in breakthrough curve experiments (BTC). We found that competitive adsorption of Na+, K+, and NH4+ transport could be observed in EAB and BTC, depending on the dissolved ion species present. Na+ followed a Langmuir isotherm, K+ a linear isotherm within the tested concentration range (~10 - 1500 mg L-1), while the results for NH4+ are inconclusive due to potential microbial degradation. Only Na+ showed clear evidence of competitive behaviour, with an order of magnitude decrease in maximum adsorption capacity in the presence of NH4+ (0.22 to 0.02 mol kg-1), which was confirmed by the BTC data where the Na+ retardation coefficient differed between the experiments with different cations. Thus, solute mobility in peatlands is affected by competitive adsorption.

Deposition and transport of Pseudomonas aeruginosa in porous media: lab-scale experiments and model analysis

Environ Technol 2013 Sep-Oct;34(17-20):2757-64.PMID:24527639DOI:10.1080/09593330.2013.788070.

In this study, the deposition and transport of Pseudomonas aeruginosa on sandy porous materials have been investigated under static and dynamic flow conditions. For the static experiments, both equilibrium and kinetic batch tests were performed at a 1:3 and 3:1 soil:solution ratio. The batch data were analysed to quantify the deposition parameters under static conditions. Column tests were performed for dynamic flow experiments with KCl solution and bacteria suspended in (1) deionized water, (2) mineral salt medium (MSM) and (3) surfactant + MSM. The equilibrium distribution coefficient (K(d)) was larger at a 1:3 (2.43 mL g(-1)) than that at a 3:1 (0.28 mL g(-1)) soil:solution ratio. Kinetic batch experiments showed that the reversible deposition rate coefficient (k(att)) and the release rate coefficient (k(det)) at a soil:solution ratio of 3:1 were larger than those at a 1:3 ratio. Column experiments showed that an increase in ionic strength resulted in a decrease in peak concentration of bacteria, mass recovery and tailing of the bacterial breakthrough curve (BTC) and that the presence of surfactant enhanced the movement of bacteria through quartz sand, giving increased mass recovery and tailing. Deposition parameters under dynamic condition were determined by fitting BTCs to four different transport models, (1) kinetic reversible, (2) two-site, (3) kinetic irreversible and (4) kinetic reversible and irreversible models. Among these models, Model 4 was more suitable than the others since it includes the irreversible sorption term directly related to the mass loss of bacteria observed in the column experiment. Applicability of the parameters obtained from the batch experiments to simulate the column breakthrough data is evaluated.