Home>>Signaling Pathways>> Immunology/Inflammation>> Reactive Oxygen Species>>6-Methylpterin

6-Methylpterin Sale

(Synonyms: 2-氨基-6-甲基吡嗪并吡啶-4(1H)-酮) 目录号 : GC49864

A derivative of folic acid

6-Methylpterin Chemical Structure

Cas No.:708-75-8

规格 价格 库存 购买数量
50 mg
¥1,888.00
现货
100 mg
¥3,584.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

6-Methylpterin is a derivative of the essential B vitamin folic acid .1 It generates singlet oxygen and hydrogen peroxide when exposed to photoirradiation in cell-free assays.2 6-Methylpterin has been used as an internal standard for the detection of pterins in urine.3

1.Tsyupka, D.V., Mordovina, E.A., Sindeeva, O.A., et al.High-fluorescent product of folic acid photodegradation: Optical properties and cell effectJ. Photochem. Photobiol. A Chem.407113045(2021) 2.Cabrerizo, F.M., Lorente, C., Vignoni, M., et al.Photochemical behavior of 6-methylpterin in aqueous solutions: Generation of reactive oxygen speciesPhotochem. Photobiol.81(4)793-801(2005) 3.GirÓn, A.J., MartÍn-Tornero, E., SÁnchez, M.C.H., et al.A simple HPLC-ESI-MS method for the direct determination of ten pteridinic biomarkers in human urineTalanta101465-472(2012)

Chemical Properties

Cas No. 708-75-8 SDF Download SDF
别名 2-氨基-6-甲基吡嗪并吡啶-4(1H)-酮
Canonical SMILES O=C1N=C(N)N=C2NC=C(C)N=C21
分子式 C7H7N5O 分子量 177.2
溶解度 DMF: Slightly soluble,DMSO: Slightly soluble,Ethanol: Slightly soluble,PBS (pH 7.2): Slightly soluble,Water: Slightly soluble 储存条件 -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 5.6433 mL 28.2167 mL 56.4334 mL
5 mM 1.1287 mL 5.6433 mL 11.2867 mL
10 mM 0.5643 mL 2.8217 mL 5.6433 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Photochemical behavior of 6-Methylpterin in aqueous solutions: generation of reactive oxygen species

Photochem Photobiol 2005 Jul-Aug;81(4):793-801.PMID:15720158DOI:10.1562/2004-11-29-RA-383.

Pterins are a family of heterocyclic compounds present in a wide range of living systems that participate in relevant biological functions and are involved in different photobiological processes. 6-Methylpterin (MPT) was investigated for its efficiency of singlet-oxygen (1O2) production and quenching in aqueous solution. The quantum yields of 1O2 production (phi(delta)) was determined by measurements of the 1O2 luminescence in the near-infrared upon continuous excitation of the sensitizer. Values of phi(delta) were found to be 0.10 +/- 0.02 and 0.14 +/- 0.02 in acidic and alkaline media, respectively. Studies of the photooxidation of MPT in acidic (pH = 5.0-6.0) and alkaline (pH = 10.2-10.8) aqueous solutions at 350 nm and room temperature have been performed. The photochemical reactions were followed by UV-visible spectrophotometry, high-performance liquid chromatography and an enzymatic method for H2O2 determination. MPT is not light sensitive in the absence of oxygen, but it undergoes a photooxidation reaction in the presence of oxygen, yielding several nonpteridinic products. The quantum yields of MPT disappearance were determined and values of 2.4 (+/-0.5) x 10(-4) and 8.1 (+/-0.8) x 10(-4) were obtained in acidic and alkaline media, respectively. H2O2 was detected and quantified in irradiated solutions of MPT. The rate constant of the chemical reaction between 1O2 and MPT (k(r)) was determined to be 4.9 x 10(6) M(-1) s(-1) in alkaline medium and the role of 1O2 in the photooxidation of MPT is discussed.

Type I Photosensitized Oxidation of Methionine†

Photochem Photobiol 2021 Jan;97(1):91-98.PMID:32702142DOI:10.1111/php.13314.

Methionine (Met) is an essential sulfur-containing amino acid, sensitive to oxidation. The oxidation of Met can occur by numerous pathways, including enzymatic modifications and oxidative stress, being able to cause relevant alterations in protein functionality. Under UV radiation, Met may be oxidized by direct absorption (below 250 nm) or by photosensitized reactions. Herein, kinetics of the reaction and identification of products during photosensitized oxidation were analyzed to elucidate the mechanism for the degradation of Met under UV-A irradiation using pterins, pterin (Ptr) and 6-Methylpterin (Mep), as sensitizers. The process begins with an electron transfer from Met to the triplet-excited state of the photosensitizer (Ptr or Mep), to yield the corresponding pair of radicals, Met radical cation (Met•+ ) and the radical anion of the sensitizer (Sens•- ). In air-equilibrated solutions, Met•+ incorporates one or two atoms of oxygen to yield methionine sulfoxide (MetO) and methionine sulfone (MetO2 ), whereas Sens•- reacts with O2 to recover the photosensitizer and generate superoxide anion (O2 •- ). In anaerobic conditions, further free-radical reactions lead to the formation of the corresponding dihydropterin derivatives (H2 Ptr or H2 Mep).

How Is the Oxidation Related to the Tautomerization in Vitamin B9?

J Phys Chem A 2021 Oct 28;125(42):9346-9354.PMID:34663066DOI:10.1021/acs.jpca.1c06678.

The relationship between the lactim-lactam tautomerization and the free-radical scavenging reaction in vitamin B9 [folic acid (FA)] was investigated by density functional theory calculations. 6-Methylpterin was also adopted for the detailed analyses of various reaction paths. For pterin, the transition state of the tautomerization with two water molecules (n = 2) was calculated to be of the lowest activation energy. The proton-transfer circuit of n = 2 is retained (not broken) even with the addition of outer water molecules, n = 2 + 2, 2 + 4, 2 + 8, and 2 + 14. At the oxidation of the system composed of 6-Methylpterin + (H2O)2 + HO•, the radical character of HO• is directly transmitted to the pterin ring along with the C-O → H → O → H → O → H → OH proton transfer. The patterns of the electron transfer (pterin ring → OX•) and the concomitant proton transfer via the water dimer were commonly obtained for the oxidant (OX•) = HO•, Cl3C-O2•, N3•, or SO4-•. The hydrogen atom transfer mechanism was ruled out. Two conformations of the puckered form with the -C(═O)-OH···N intramolecular hydrogen bonds of FA were found to have the stability similar to that of the linear conformer. Both the tautomerization and the oxidation were calculated to occur competitively in the three conformers.

Catalytic properties of NADPH-specific dihydropteridine reductase from bovine liver

J Biochem 1986 Mar;99(3):645-52.PMID:3711040DOI:10.1093/oxfordjournals.jbchem.a135523.

The catalytic properties of a new type of dihydropteridine reductase, NADPH-specific dihydropteridine reductase [EC 1.6.99.10], from bovine liver, were studied and compared with those of the previously characterized enzyme, NADH-specific dihydropteridine reductase [EC 1.6.99.7]. With quinonoid-dihydro-6-methylpterin, approximate Km values of NADPH-specific dihydropteridine reductase for NADPH and NADH were estimated to be 1.4 micron and 2,900 microns, respectively. The Vmax values were 1.34 mumol/min/mg with NADPH and 1.02 mumol/min/mg with NADPH. With NADPH, the Km values of the enzyme for the quinonoid-dihydro forms of 6-Methylpterin and biopterin were 1.4 micron and 6.8 microns, respectively. The enzyme was inhibited by its reaction product, NADP+, in a competitive manner, and the inhibition constant was determined to be 3.2 microns. The enzyme was severely inhibited by L-thyroxine and by 2,6-dichlorophenolindophenol.

Mechanism of photooxidation of folic acid sensitized by unconjugated pterins

Photochem Photobiol Sci 2010 Dec;9(12):1604-12.PMID:20922252DOI:10.1039/c0pp00210k.

Folic acid, or pteroyl-l-glutamic acid (PteGlu), is a precursor of coenzymes involved in the metabolism of nucleotides and amino acids. PteGlu is composed of three moieties: a 6-Methylpterin (Mep) residue, a p-aminobenzoic acid (PABA) residue, and a glutamic acid (Glu) residue. Accumulated evidence indicates that photolysis of PteGlu leads to increased risk of several pathologies. Thus, a study of PteGlu photodegradation can have significant ramifications. When an air-equilibrated aqueous solution of PteGlu is exposed to UV-A radiation, the rate of the degradation increases with irradiation time. The mechanism involved in this "auto-photo-catalytic" effect was investigated in aqueous solutions using a variety of tools. Whereas PteGlu is photostable under anaerobic conditions, it is converted into 6-formylpterin (Fop) and p-aminobenzoyl-l-glutamic acid (PABA-Glu) in the presence of oxygen. As the reaction proceeds and enough Fop accumulates in the solution, a photosensitized electron-transfer process starts, where Fop photoinduces the oxidation of PteGlu to Fop, and H(2)O(2) is formed. This process also takes place with other pterins as photosensitizers. The results are discussed with the context of previous mechanisms for processes photosensitized by pterins, and their biological implications are evaluated.