Home>>6-deoxy-L-Talose

6-deoxy-L-Talose Sale

(Synonyms: 6-脱氧-L-塔罗糖) 目录号 : GC41471

A microbial monosaccharide

6-deoxy-L-Talose Chemical Structure

Cas No.:7658-10-8

规格 价格 库存 购买数量
1mg
¥857.00
现货
5mg
¥3,340.00
现货
10mg
¥6,013.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

Chemical Properties

Cas No. 7658-10-8 SDF
别名 6-脱氧-L-塔罗糖
Canonical SMILES O=C[C@@H]([C@H](O)[C@@H]([C@H](C)O)O)O
分子式 C6H12O5 分子量 164.2
溶解度 DMF: 10mg/mL,DMSO: 20mg/mL,PBS (pH 7.2): 10mg/mL 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.0901 mL 30.4507 mL 60.9013 mL
5 mM 1.218 mL 6.0901 mL 12.1803 mL
10 mM 0.609 mL 3.0451 mL 6.0901 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Acinetobacter baumannii K106 and K112: Two Structurally and Genetically Related 6-Deoxy-l-talose-Containing Capsular Polysaccharides

Int J Mol Sci 2021 May 26;22(11):5641.PMID:34073255DOI:10.3390/ijms22115641.

Whole genome sequences of two Acinetobacter baumannii clinical isolates, 48-1789 and MAR24, revealed that they carry the KL106 and KL112 capsular polysaccharide (CPS) biosynthesis gene clusters, respectively, at the chromosomal K locus. The KL106 and KL112 gene clusters are related to the previously described KL11 and KL83 gene clusters, sharing genes for the synthesis of l-rhamnose (l-Rhap) and 6-deoxy-L-Talose (l-6dTalp). CPS material isolated from 48-1789 and MAR24 was studied by sugar analysis and Smith degradation along with one- and two-dimensional 1H and 13C NMR spectroscopy. The structures of K106 and K112 oligosaccharide repeats (K units) l-6dTalp-(1→3)-D-GlcpNAc tetrasaccharide fragment share the responsible genes in the respective gene clusters. The K106 and K83 CPSs also have the same linkage between K units. The KL112 cluster includes an additional glycosyltransferase gene, Gtr183, and the K112 unit includes α l-Rhap side chain that is not found in the K106 structure. K112 further differs in the linkage between K units formed by the Wzy polymerase, and a different wzy gene is found in KL112. However, though both KL106 and KL112 share the atr8 acetyltransferase gene with KL83, only K83 is acetylated.

Thymidine diphosphate-6-deoxy-L-lyxo-4-hexulose reductase synthesizing dTDP-6-deoxy-L-talose from Actinobacillus actinomycetemcomitans

J Biol Chem 2000 Mar 10;275(10):6806-12.PMID:10702238DOI:10.1074/jbc.275.10.6806.

The serotype c-specific polysaccharide antigen of Actinobacillus actinomycetemcomitans NCTC 9710 contains an unusual sugar, 6-deoxy-L-Talose, which has been identified as a constituent of cell wall components in some bacteria. Two genes coding for thymidine diphosphate (dTDP)-6-deoxy-L-lyxo-4-hexulose reductases were identified in the gene cluster required for biosynthesis of serotype c-specific polysaccharide. Both dTDP-6-deoxy-L-lyxo-4-hexulose reductases were overproduced and purified from Escherichia coli transformed with the plasmids containing these genes. The sugar nucleotides converted by both reductases were purified by reversed-phase high performance liquid chromatography and identified by (1)H nuclear magnetic resonance and gas-liquid chromatography. The results indicated that one of two reductases produced dTDP-6-deoxy-L-talose and the other produced dTDP-L-rhamnose (dTDP-6-deoxy-L-mannose). The amino acid sequence of the dTDP-6-deoxy-L-lyxo-4-hexulose reductase forming dTDP-6-deoxy-L-talose shared only weak homology with that forming dTDP-L-rhamnose, despite the fact that these two enzymes catalyze the reduction of the same substrate and the products are determined by the stereospecificity of the reductase activity. Neither the gene for dTDP-6-deoxy-L-talose biosynthesis nor its corresponding protein product has been found in other bacteria; this biosynthetic pathway is identified here for the first time.

Acinetobacter baumannii K11 and K83 capsular polysaccharides have the same 6-deoxy-l-talose-containing pentasaccharide K units but different linkages between the K units

Int J Biol Macromol 2017 Oct;103:648-655.PMID:28528003DOI:10.1016/j.ijbiomac.2017.05.082.

Acinetobacter baumannii produces a variety of capsular polysaccharides (CPS) via genes located at the chromosomal K locus and some KL gene clusters include genes for the synthesis of specific sugars. The structures of K11 and K83 CPS produced by isolates LUH5545 and LUH5538, which carry related KL11a and KL83 gene clusters, respectively, were established by sugar analysis and one- and two-dimensional 1H and 13C NMR spectroscopy. Both CPS contain l-rhamnose (l-Rha) and 6-deoxy-L-Talose (l-6dTal), and both KL gene clusters include genes for dTDP-l-Rhap synthesis and a tle (talose epimerase) gene encoding an epimerase that converts dTDP-l-Rhap to dTDP-l-6dTalp. The K11 and K83 repeat units are the same pentasaccharide, consisting of d-glucose, l-Rha, l-6dTal, and N-acetyl-d-glucosamine, except that l-6dTal is 2-O-acetylated in K83. However, the K units are linked differently, with l-Rha in the main chain in K11, but as a side-branch in K83. KL11 and KL83 encode unrelated Wzy polymerases that link the K units together and different acetyltransferases, though only Atr8 from KL83 is active. The substrate specificity of each Wzy polymerase was assigned, and the functions of all glycosyltransferases were predicted. The CPS structures produced by three closely related K loci, KL29, KL105 and KL106, were also predicted.

Novel process for producing 6-deoxy monosaccharides from l-fucose by coupling and sequential enzymatic method

J Biosci Bioeng 2016 Jan;121(1):1-6.PMID:26031195DOI:10.1016/j.jbiosc.2015.04.017.

We biosynthesized 6-deoxy-L-Talose, 6-deoxy-L-sorbose, 6-deoxy-L-gulose, and 6-deoxy-L-idose, which rarely exist in nature, from L-fucose by coupling and sequential enzymatic reactions. The first product, 6-deoxy-L-Talose, was directly produced from L-fucose by the coupling reactions of immobilized D-arabinose isomerase and immobilized L-rhamnose isomerase. In one-pot reactions, the equilibrium ratio of L-fucose, L-fuculose, and 6-deoxy-L-Talose was 80:9:11. In contrast, 6-deoxy-L-sorbose, 6-deoxy-L-gulose, and 6-deoxy-L-idose were produced from L-fucose by sequential enzymatic reactions. D-Arabinose isomerase converted L-fucose into L-fuculose with a ratio of 88:12. Purified L-fuculose was further epimerized into 6-deoxy-L-sorbose by D-allulose 3-epimerase with a ratio of 40:60. Finally, purified 6-deoxy-L-sorbose was isomerized into both 6-deoxy-L-gulose with an equilibrium ratio of 40:60 by L-ribose isomerase, and 6-deoxy-L-idose with an equilibrium ratio of 73:27 by D-glucose isomerase. Based on the amount of L-fucose used, the production yields of 6-deoxy-L-Talose, 6-deoxy-L-sorbose, 6-deoxy-L-gulose, and 6-deoxy-L-idose were 7.1%, 14%, 2%, and 2.4%, respectively.

6-Deoxy-D-talan and 6-deoxy-L-talan. Novel serotype-specific polysaccharide antigens from Actinobacillus actinomycetemcomitans

J Biol Chem 1991 Sep 5;266(25):16318-23.PMID:1885566doi

Serotype-specific polysaccharide antigens from Actinobacillus actinomycetemcomitans ATCC 29523 (serotype a) and NCTC 9710 (serotype c) were extracted from whole cells by autoclaving and purified by ion-exchange chromatography and gel filtration. Analysis of component sugars by gas-liquid chromatography-mass spectrometry, high performance liquid chromatography, and NMR together with optical rotation data showed that the serotype a antigen was composed solely of 6-deoxy-D-talose, whereas the serotype c antigen consisted of 6-deoxy-L-Talose. Structural analysis indicated that both of these antigens were composed of closely related repeating units, -3)-6-deoxy-alpha-D-Talp-(1-2)-6-deoxy-alpha-D-Talp-(1-(sero type a) and -3)-6-deoxy-alpha-L-Talp-(1-2)-6-deoxy-alpha-L-Talp-(1-(sero type c). 1H and 13C NMR analysis showed that both of these serotype antigens contained one acetyl group/2 sugar residues. These acetyl groups localized at the O-2 position of 3-linked 6-deoxy-D-talose (serotype a) or O-4 position of 3-linked 6-deoxy-L-Talose residues (serotype c), respectively. These results coupled with our previous findings on the serotype b antigen (Amano, K., Nishihara, T., Shibuya, N., Noguchi, T., and Koga, T. (1989) Infect. Immun. 57, 2942-2946) showed that the serotype antigens from A. actinomycetemcomitans are a group of novel polysaccharides with structural features closely related biosynthetically.