Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>3-Hydroxyvaleric acid

3-Hydroxyvaleric acid Sale

(Synonyms: 3-羟基戊酸) 目录号 : GC30729

3-Hydroxyvalericacid是一种五碳酮体。3-Hydroxyvalericacid可以发生回补反应,即可以补充三羧酸循环的中间产物。

3-Hydroxyvaleric acid Chemical Structure

Cas No.:10237-77-1

规格 价格 库存 购买数量
5mg
¥982.00
现货
10mg
¥1,607.00
现货
25mg
¥3,392.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

3-Hydroxyvaleric acid is a 5-carbon ketone body. 3-Hydroxyvaleric acid is anaplerotic, meaning it can refill the pool of TCA cycle intermediates.

Chemical Properties

Cas No. 10237-77-1 SDF
别名 3-羟基戊酸
Canonical SMILES CCC(O)CC(O)=O
分子式 C5H10O3 分子量 118.13
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 8.4653 mL 42.3263 mL 84.6525 mL
5 mM 1.6931 mL 8.4653 mL 16.9305 mL
10 mM 0.8465 mL 4.2326 mL 8.4653 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The Effect of the Extrusion Method on Processing and Selected Properties of Poly(3-hydroxybutyric-co-3-hydroxyvaleric Acid)-Based Biocomposites with Flax and Hemp Fibers

The paper presents a comparative analysis of two extrusion methods of biocomposites with a poly(3-hydroxybutyrate-co-3-hydroxyvalerate acid) (PHBV) matrix filled with flax and hemp fibers in terms of biopolymer production, its processing in the further injection process, and an evaluation of the mechanical and functional properties of the products. Biocomposites containing 15% by weight of the filler were produced using single- and twin-screw extruders. The biocomposites were then processed by injection molding and then, among other things, the pressures in the mold cavity during processing were analyzed. The produced samples were tested by means of the following tests: uniaxial tensile strength, hardness, and impact tensile strength. The biocomposite's microstructure was also analyzed using scanning electron microscopy (SEM), as were the shrinkage and water absorption of the manufactured products. In addition, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) tests were performed. It was found that the extrusion method changed significantly the geometry of the filler fibers and the processing capabilities of the manufactured materials. Significant differences in the mechanical and functional properties of the obtained biocomposite products were also found. On their basis, the advantages and disadvantages of both extrusion methods were discussed. Most of the obtained properties of injection products indicate the choice of single-screw extrusion. The products were characterized by slightly better mechanical properties and lower processing shrinkage. In turn, composites obtained by the screw method were characterized by lower water absorption and lower viscosity of the composite during injection molding.

The Use of Computed Tomography in the Study of Microstructure of Molded Pieces Made of Poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) (PHBV) Biocomposites with Natural Fiber

In order to determine the structure homogeneity of biocomposites filled with fibers, as well as the evaluation of fibers' arrangement and their orientation on the sample cross-section at varied injection rates, a study was conducted using computed tomography (CT). The main advantage of this test is the fact that in order to assess the microstructure on cross-sections, the samples do not have to be processed mechanically, which allows for presenting the actual image of the microstructure. The paper presents the issues of such tests for the biocomposite of poly (3-hydroxybutyric-co-3-hydroxyvaleric acid) (PHBV)-hemp fibers. It should be emphasized that CT scanning of PHBV-hemp fiber biocomposites is quite difficult to perform due to the similar density of the fibers and the polymer matrix. Due to the high difficulty of distinguishing fibers against the background of the polymer matrix during CT examination, a biocomposite containing 15% hemp fibers was analyzed. The samples for testing were manufactured using the injection molding process at variable injection rates, i.e., 10, 35 and 70 cm3/s. The images obtained by computed tomography show the distribution of hemp fibers and their clusters in the PHBV matrix and the degree of porosity on the sample cross-section. There were significant microstructural differences for the samples injected at the highest injection rates, including, among others, the occurrence of a smaller number of fibers and pores on the surface layer of the molded piece. The phenomenon observed was verified by testing chosen mechanical properties, shrinkage and water absorption of the samples. Some properties improved with an increasing injection rate, while others deteriorated and vice versa. An analysis of biocomposites' microstructures using computed tomography provides a wide range of possibilities for future research, including an assessment of the structure of the molded parts. These tests may allow one, for example, to detect the cause of molded piece properties decreasing in a specific area as a result of a high degree of fiber disorientation, as well as the defects resulting from high porosity of the material. Such analyses can be particularly useful for producers that deal with the injection molding of pieces molded with specific properties.

Laser deposition of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) - lysozyme microspheres based coatings with anti-microbial properties

The purpose of this study was to obtain, characterize and evaluate the cytotoxicity and antimicrobial activity of coatings based on poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) - Lysozyme (P(3HB-3HV)/Lys) and P(3HB-3HV) - Polyethylene glycol - Lysozyme (P(3HB-3HV)/PEG/Lys) spheres prepared by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique, in order to obtain functional and improved Ti-based implants. Morphological investigation of the coatings by Infrared Microscopy (IRM) and SEM revealed that the average diameter of P(3HB-3HV)/Lys spheres is around 2μm and unlike the drop cast samples, IRM recorded on MAPLE films revealed a good distribution of monitored functional groups on the entire scanned surface. The biological evaluation of MAPLE structured surfaces revealed an improved biocompatibility with respect to osteoblasts and endothelial cells as compared with Ti substrates and an enhanced anti-biofilm effect against Gram positive (Staphylococcus aureus) and Gram negative (Pseudomonas aeruginosa) tested strains. Thus, we propose that the fabricated P(3HB-3HV)/PEG/Lys and P(3HB-3HV)/Lys microspheres may be efficiently used as a matrix for controlled local drug delivery, with practical applications in developing improved medical surfaces for the reduction of implant-associated infections.

Production of poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) having a high hydroxyvalerate content with valeric acid feeding

The capability of different organic acids to produce a derivative of PHB [poly(3-hydroxybutyric-co-3-hydroxyvaleric acid), P(3HB-co-3HV)] was examined in shake flask cultivations. Propionic and valeric acids demonstrated the potential to produce P(3HB-co-3HV) under nitrogen limiting conditions at 30 degrees C. The addition time and the initial concentration of valeric acid needed for a high cellular HV content were identified by extensive experimentation. Fed-batch cultivation in 7-l bioreactor with valeric acid feeding resulted in the production of PHA containing 54% HV units.

Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) based tissue engineering matrices

In this study, the aim was to produce tissue-engineered bone using osteoblasts and a novel matrix material, poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV). In order to prepare a porous PHBV matrix with uniform pore size, sucrose crystals were loaded in the foam and then leached leaving pores behind. The surface of the PHBV matrix was treated with rf-oxygen plasma to increase the surface hydrophilicity. SEM examination of the PHBV matrices was carried out. Stability of PHBV foams in aqueous media was studied. The pH decrease is an indication of the degradation extent. The weight and density were unchanged for a period of 120 days but then a significant decrease was observed for the rest of the study. Osteoblast cells were then isolated from rat bone marrow and seeded onto PHBV matrices. The metabolization and proliferation on the foams was determined with MTS assay which showed that osteoblasts proliferated on PHBV. It was also found that cells proliferated better on large pore size foams (300-500 microm) than on the small pore size foams (75-300 microm). Production of ALP was measured spectrophotometrically. The present study demonstrated that PHBV matrices are suitable substrates for osteoblast proliferation and differentiation.