Home>>Natural Products>>5-Aminofluorescein (5-AF)

5-Aminofluorescein (5-AF) Sale

(Synonyms: 5-氨基荧光素; 5-AF) 目录号 : GC30107

A fluorescent compound and an inhibitor of FTO

5-Aminofluorescein (5-AF) Chemical Structure

Cas No.:3326-34-9

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥589.00
现货
500mg
¥536.00
现货
1g
¥785.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

5-Aminofluorescein is a fluorescent compound and an inhibitor of the mRNA N6-methyladenosine (m6A) demethylase fat mass and obesity-associated (FTO) protein (IC50 = 6.55 ?M).1,2 It displays excitation/emission maxima of 490 and 515 nm, respectively, and has been conjugated to human serum albumin for fluorescence imaging of glioblastomas.1,3

1.Al-Natour, M.A., Yousif, M.D., Cavanagh, R., et al.Facile dye-initiated polymerization of lactide-glycolide generates highly fluorescent poly(lactic-co-glycolic acid) for enhanced characterization of cellular deliveryACS Macro Lett.9(3)431-437(2020) 2.Wang, T., Hong, T., Huang, Y., et al.Fluorescein derivatives as bifunctional molecules for the simultaneous inhibiting and labeling of FTO proteinJ. Am. Chem. Soc.137(43)13736-13739(2015) 3.Ding, R., Frei, E., Fardanesh, M., et al.Pharmacokinetics of 5-aminofluorescein-albumin, a novel fluorescence marker of brain tumors during surgeryJ. Clin. Pharmacol.51(5)672-678(2011)

Chemical Properties

Cas No. 3326-34-9 SDF
别名 5-氨基荧光素; 5-AF
Canonical SMILES O=C1OC2(C3=C(OC4=C2C=CC(O)=C4)C=C(O)C=C3)C5=C1C=C(N)C=C5
分子式 C20H13NO5 分子量 347.32
溶解度 DMSO : ≥ 32 mg/mL (92.13 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.8792 mL 14.3959 mL 28.7919 mL
5 mM 0.5758 mL 2.8792 mL 5.7584 mL
10 mM 0.2879 mL 1.4396 mL 2.8792 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Conjugation of amino-bioactive glasses with 5-aminofluorescein as probe molecule for the development of pH sensitive stimuli-responsive biomaterials

J Mater Sci Mater Med 2014 Oct;25(10):2243-53.24722810 10.1007/s10856-014-5206-4

Bioceramics, such as silica-based glasses, are widely used in bone and teeth restoration. Nowadays, the association between nanotechnology and pharmacology is one of the most promising research fields in cancer therapy. The advanced processing methods and new chemical strategies allow the incorporation of drugs within them or on their functionalized surfaces. Bioceramics can act as local drug delivery systems to treat bone and teeth diseases. The present paper reports data related to the development of a pH-stimuli responsive bioactive glass. The glass conjugation with 5-Aminofluorescein (5-AF), through a pH-sensitive organic spacer, allows to produce a pH-responsive bioactive biomaterial: when it is exposed to specific pH changes, it can favour the release of 5-AF directly at the target site. 5-AF has been chosen as a simple, low cost, non toxic model to simulate doxorubicin, an anticancer drug. As doxorubicin, 5-AF contains an amino group in its structure in order to form an amide bond with the carboxylic functionalities of the glass. Raman spectroscopy and thermal analysis confirm the glass conjugation of 5-AF by means of an amide bond; the amount of 5-AF loaded was very high (≿65 and 44 wt%). The release tests at two different pH (4.2 and 7.4) show that the amount of released 5-AF is higher at acid pH with respect to physiological one. This preliminary datum evidenced that a pH-sensitive drug delivery system has been developed. The low amount of 5-AF released (<1 wt% of the total 5-AF) is due to the very low solubility of 5-AF in aqueous medium. This disadvantage, may be overcome in a dynamic environment (physiological conditions), where it is possible to obtain a drug release system ensuring an effective therapeutic dose for long times and, at the same time, avoiding the drug toxicity.

Detection of Microcystin-LR in the Cells and Natural Lake Water Samples by A Unique Fluorescence-Based Method

J Fluoresc 2022 Mar;32(2):505-519.34981282 10.1007/s10895-021-02882-2

Microcystin-LR (MC-LR) is widely distributed in natural lakes and could strongly inhibit protein phosphatase activity; it is also a potent liver tumor promoter. Over the last two decades, tremendous efforts have been devoted to enhance the detection of MC-LR in water samples. However, the traditional method is complex and costly, and achieving the fast, sensitive, and accurate determination of MC-LR in the cells and natural lakes by using fluorescence signal changes is fairly difficult. Our work explores novel fluorescent probes that are capable of concurrently analyzing and detecting MC-LR in the cells and water. In this study, we introduce, for the first time, 5-AF and 6-AF as small-molecule fluorescent probes suitable for MC-LR detection in the cells and water samples based on fluorescence signal changes. We titrated 5-AF and 6-AF with MC-LR in pure water, scanned the fluorescence of the sample, and then obtained the equation the fluorescence intensity versus MC-LR concentration curve. MC-LR in lake water samples was crudely purified, and then 5-AF was added to measure its fluorescence peak. The fluorescence intensity of 5-AF is significantly enhanced with increasing MC-LR concentration. This enhancement trend is stable and could be mathematically modeled. We also comprehensively analyzed the mechanism and recognition principle of the probe response to MC-LR in natural lake water. Moreover, we believe that 5-AF may be capable of detecting exogenous MC-LR in cells. The results of this study reveal that these unique fluorescent probes may be applied to construct near-infrared fluorescent probes that could detect MC-LR levels in vivo.

Ultrabright dye-loaded spherical polyelectrolyte brushes and their fundamental structure-fluorescence tuning principles

Nanoscale 2019 Aug 7;11(29):14050-14059.31313795 10.1039/c9nr02168j

Ultrabright fluorescent particles (UFPs) have attracted increasing attention because of their outstanding signal amplification functions. However, there is still an urgent demand for designing novel UFPs with new components or structures as the existing ones can not satisfy the practical requirements due to their inherent disadvantages. Here we propose a novel ultrabright fluorescent particle platform by doping dyes of 5-Aminofluorescein (5-AF) into silica core-based spherical poly (acrylic acid) brushes (SiO2@PAA@5-AF) and discuss their fundamental structure-fluorescence tuning principles. A series of brushes with different polymer chain lengths are successfully synthesized and then loaded with 5-AF through chemical binding. The high loading amount, suitable density or distribution, and enhanced quantum yield (QY) of 5-AF due to the amide bond formation with PAA chains on brushes are concluded as the three major reasons for the ultrabrightness of SiO2@PAA@5-AF. Therefore, a 2350 ± 445 times brighter brush particle in comparison to a single quantum dot (QD) is realized, and a 2.1 ± 0.4 times fluorescence improvement of a brush vs. a QD normalized by volume is also achieved when taking the hydrodynamic diameter into consideration (∿00 nm vs. ∿0 nm). Moreover, the excellent tolerance stabilities in normally applied environments and outstanding label effects to form 4-plexed encoded beads are demonstrated as well. The results in this work strongly indicate a promising potential of SiO2@PAA@5-AF as an ultrabright and stable signal amplification tool for biomedical related sensing, labeling, and biodetection.

In Situ Fluorescence Tracking Toxic Metabolite Mono-2-ethylhexyl phthalate (MEHP) of Di-(2-ethylhexyl) phthalate (DEHP) in HeLa Cells

Chem Res Toxicol 2019 Oct 21;32(10):2006-2015.31469264 10.1021/acs.chemrestox.9b00191

In this study, we synthesized a small molecule fluorescent probe for detecting mono-2-ethylhexyl phthalate (MEHP) named MEHP-AF, which formed by MEHP cross-linked with 5-Aminofluorescein (5-AF) through amide bond. MEHP-AF had been purified based on the different physicochemical properties of 5-AF with MEHP. MEHP-AF showed fluorescence characteristics coming from 5-AF and liposoluble property coming from MEHP. After physicochemical characterization, a series of biological studies of its action in cells were carried out. The results indicated that MEHP-AF was a fluorescent probe with strong specificity and high sensitivity. It can visibly track the location of MEHP in HeLa cell or subcellular levels under confocal laser scanning microscopy in situ. This novel fluorescent probe is expected to use for studying its intracellular behavior at the cell level, especially for investigating the interaction between MEHP and cellular molecules.

Hairy Fluorescent Nanospheres Based on Polyelectrolyte Brush for Highly Sensitive Determination of Cu(II)

Polymers (Basel) 2020 Mar 5;12(3):577.32150845 PMC7182828

Currently, it is an ongoing challenge to develop fluorescent nanosphere detectors that are uniform, non-toxic, stable and bearing a large number of functional groups on the surface for further applications in a variety of fields. Here, we have synthesized hairy nanospheres (HNs) with different particle sizes and a content range of carboxyl groups from 4 mmol/g to 9 mmol/g. Based on this, hairy fluorescent nanospheres (HFNs) were prepared by the traditional coupling method (TCM) or adsorption-induced coupling method (ACM). By comparison, it was found that high brightness HFNs are fabricated based on HNs with poly (acrylic acid) brushes on the surface via ACM. The fluorescence intensity of hairy fluorescent nanospheres could be controlled by tuning the content of 5-Aminofluorescein (5-AF) or the carboxyl groups of HNs easily. The carboxyl content of the HFNs could be as high as 8 mmol/g for further applications. The obtained HFNs are used for the detection of heavy metal ions in environmental pollution. Among various other metal ions, the response to Cu (II) is more obvious. We demonstrated that HFNs can serve as a selective probe and for the separation and determination of Cu(II) ions with a linear range of 0-0.5 μM and a low detection limit of 64 nM.