Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>3-Hydroxyhippuric acid

3-Hydroxyhippuric acid Sale

(Synonyms: 3-羟基马尿酸) 目录号 : GC30603

3-Hydroxyhippuricacid是一种酰基甘氨酸。酰基甘氨酸通常是脂肪酸的次要代谢物。

3-Hydroxyhippuric acid Chemical Structure

Cas No.:1637-75-8

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥1,386.00
现货
50mg
¥1,260.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

3-Hydroxyhippuric acid is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids.

Chemical Properties

Cas No. 1637-75-8 SDF
别名 3-羟基马尿酸
Canonical SMILES O=C(O)CNC(C1=CC=CC(O)=C1)=O
分子式 C9H9NO4 分子量 195.17
溶解度 DMSO : 83.33 mg/mL (426.96 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 5.1237 mL 25.6187 mL 51.2374 mL
5 mM 1.0247 mL 5.1237 mL 10.2475 mL
10 mM 0.5124 mL 2.5619 mL 5.1237 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Urinary 3-(3-Hydroxyphenyl)-3-hydroxypropionic Acid, 3-Hydroxyphenylacetic Acid, and 3-Hydroxyhippuric Acid Are Elevated in Children with Autism Spectrum Disorders

Autism spectrum disorders (ASDs) are a group of mental illnesses highly correlated with gut microbiota. Recent studies have shown that some abnormal aromatic metabolites in autism patients are presumably derived from overgrown Clostridium species in gut, which may be used for diagnostic purposes. In this paper, a GC/MS based metabolomic approach was utilized to seek similar biomarkers by analyzing the urinary information in 62 ASDs patients compared with 62 non-ASDs controls in China, aged 1.5-7. Three compounds identified as 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), 3-hydroxyphenylacetic acid (3HPA), and 3-hydroxyhippuric acid (3HHA) were found in higher concentrations in autistic children than in the controls (p < 0.001). After oral vancomycin treatment, urinary excretion of HPHPA (p < 0.001), 3HPA (p < 0.005), and 3HHA (p < 0.001) decreased markedly, which indicated that these compounds may also be from gut Clostridium species. The sensitivity and specificity of HPHPA, 3HPA, and 3HHA were evaluated by receiver-operating characteristic (ROC) analysis. The specificity of each compound for ASDs was very high (>96%). After two-regression analysis, the optimal area under the curve (AUC, 0.962), sensitivity (90.3%), and specificity (98.4%) were obtained by ROC curve of Prediction probability based on the three metabolites. These findings demonstrate that the measurements of the three compounds are strong predictors of ASDs and support the potential clinical utility for identifying a subgroup of ASDs subjects.

Crystal structure of the Homo sapiens kynureninase-3-hydroxyhippuric acid inhibitor complex: insights into the molecular basis of kynureninase substrate specificity

Homo sapiens kynureninase is a pyridoxal-5'-phosphate dependent enzyme that catalyzes the hydrolytic cleavage of 3-hydroxykynurenine to yield 3-hydroxyanthranilate and L-alanine as part of the tryptophan catabolic pathway leading to the de novo biosynthesis of NAD(+). This pathway results in quinolinate, an excitotoxin that is an NMDA receptor agonist. High levels of quinolinate have been correlated with the etiology of neurodegenerative disorders such as AIDS-related dementia and Alzheimer's disease. We have synthesized a novel kynureninase inhibitor, 3-hydroxyhippurate, cocrystallized it with human kynureninase, and solved the atomic structure. On the basis of an analysis of the complex, we designed a series of His-102, Ser-332, and Asn-333 mutants. The H102W/N333T and H102W/S332G/N333T mutants showed complete reversal of substrate specificity between 3-hydroxykynurenine and L-kynurenine, thus defining the primary residues contributing to substrate specificity in kynureninases.

Serum Metabolome of Coffee Consumption and its Association With Bone Mineral Density: The Hong Kong Osteoporosis Study

Background: Inconsistent associations between coffee consumption and bone mineral density (BMD) have been observed in epidemiological studies. Moreover, the relationship of bioactive components in coffee with BMD has not been studied. The aim of the current study is to identify coffee-associated metabolites and evaluate their association with BMD.
Methods: Two independent cohorts totaling 564 healthy community-dwelling adults from the Hong Kong Osteoporosis Study (HKOS) who visited in 2001-2010 (N = 329) and 2015-2016 (N = 235) were included. Coffee consumption was self-reported in an food frequency questionnaire. Untargeted metabolomic profiling on fasting serum samples was performed using liquid chromatography-mass spectrometry platforms. BMD at lumbar spine and femoral neck was measured by dual-energy X-ray absorptiometry. Multivariable linear regression and robust regression were used for the association analyses.
Results: 12 serum metabolites were positively correlated with coffee consumption after Bonferroni correction for multiple testing (P < 4.87 × 10-5), with quinate, 3-hydroxypyridine sulfate, and trigonelline (N'-methylnicotinate) showing the strongest association. Among these metabolites, 11 known metabolites were previously identified to be associated with coffee intake and 6 of them were related to caffeine metabolism. Habitual coffee intake was positively and significantly associated with BMD at the lumbar spine and femoral neck. The metabolite 5-acetylamino-6-formylamino-3-methyluracil (AFMU) (β = 0.012, SE = 0.005; P = 0.013) was significantly associated with BMD at the lumbar spine, whereas 3-hydroxyhippurate (β = 0.007, SE = 0.003, P = 0.027) and trigonelline (β = 0.007, SE = 0.004; P = 0.043) were significantly associated with BMD at the femoral neck.
Conclusions: 12 metabolites were significantly associated with coffee intake, including 6 caffeine metabolites. Three of them (AFMU, 3-hydroxyhippurate, and trigonelline) were further associated with BMD. These metabolites could be potential biomarkers of coffee consumption and affect bone health.

Absorption, metabolism, distribution and excretion of (-)-epicatechin: A review of recent findings

This paper reviews pioneering human studies, their limitations and recent investigations on the absorption, metabolism, distribution and excretion (aka bioavailability) of (-)-epicatechin. Progress has been made possible by improvements in mass spectrometric detection when coupled to high performance liquid chromatography and through the increasing availability of authentic reference compounds of in vivo metabolites of (-)-epicatechin. Studies have shown that [2-14C](-)-epicatechin is absorbed in the small intestine with the 12 structural-related (-)-epicatechin metabolites (SREMs), mainly in the form of (-)-epicatechin-3'-O-glucuronide, 3'-O-methyl-(-)-epicatechin-5-sulfate and (-)-epicatechin-3'-sulfate, attaining sub-μmol/L peak plasma concentrations (Cmax) ?1 h after ingestion. SREMs were excreted in urine over a 24 h period in amounts corresponding to 20% of (-)-epicatechin intake. On reaching the colon the flavan-3-ol undergoes microbiota-mediated conversions yielding the 5C-ring fission metabolites (5C-RFMs) 5-(hydroxyphenyl)-γ-valerolactones and 5-(hydroxyphenyl)-γ-hydroxyvaleric acids which appear in plasma as phase II metabolites with a Cmax of 5.8 h after intake and are excreted in quantities equivalent to 42% of the ingested (-)-epicatechin. Other catabolites excreted in 0-24 h urine in amounts equivalent to 28% of intake included 3-(3'-hydroxyphenyl)hydracrylic acid, hippuric acid and 3'-hydroxyhippuric acid. Overall (-)-epicatechin is highly bioavailable with urinary excretion indicating that 95% is absorbed and passes through the circulatory systems as a diversity of phase II metabolites. Rats produce a very different profile of SREMs than that of humans. These findings demonstrate that ex vivo studies investigating the mechanisms underlying the protective effects of (-)-epicatechin on human health should make use of physiological concentrations human of SREMs and 5C-RFMs, and not the parent (-)-epicatechin, with model systems derived from human cells. In epidemiological studies 5-(4'-hydroxyphenyl)-γ-valerolactone-3'-sulfate and 5-(4'-hydroxyphenyl)-γ-valerolactone-3'-O-glucuronide, the principal 5C-RFMs in both plasma and urine, could serve as key biomarkers of (-)-epicatechin intake.

Orange juice (poly)phenols are highly bioavailable in humans

Background: We assessed the bioavailability of orange juice (poly)phenols by monitoring urinary flavanone metabolites and ring fission catabolites produced by the action of the colonic microbiota.
Objective: Our objective was to identify and quantify metabolites and catabolites excreted in urine 0-24 h after the acute ingestion of a (poly)phenol-rich orange juice by 12 volunteers.
Design: Twelve volunteers [6 men and 6 women; body mass index (in kg/m(2)): 23.9-37.2] consumed a low (poly)phenol diet for 2 d before first drinking 250 mL pulp-enriched orange juice, which contained 584 μmol (poly)phenols of which 537 μmol were flavanones, and after a 2-wk washout, the procedure was repeated, and a placebo drink was consumed. Urine collected for a 24-h period was analyzed qualitatively and quantitatively by using high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS).
Results: A total of 14 metabolites were identified and quantified in urine by using HPLC-MS after orange juice intake. Hesperetin-O-glucuronides, naringenin-O-glucuronides, and hesperetin-3'-O-sulfate were the main metabolites. The overall urinary excretion of flavanone metabolites corresponded to 16% of the intake of 584 μmol (poly)phenols. The GC-MS analysis revealed that 8 urinary catabolites were also excreted in significantly higher quantities after orange juice consumption. These catabolites were 3-(3'-methoxy-4'-hydroxyphenyl)propionic acid, 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, 3-(3'-hydroxyphenyl)hydracrylic acid, 3'-methoxy-4'-hydroxyphenylacetic acid, hippuric acid, 3'-hydroxyhippuric acid, and 4'-hydroxyhippuric acid. These aromatic acids originated from the colonic microbiota-mediated breakdown of orange juice (poly)phenols and were excreted in amounts equivalent to 88% of (poly)phenol intake. When combined with the 16% excretion of metabolites, this percentage raised the overall urinary excretion to ? 100% of intake.
Conclusions: When colon-derived phenolic catabolites are included with flavanone glucuronide and sulfate metabolites, orange juice (poly)phenols are much-more bioavailable than previously envisaged. In vitro and ex vivo studies on mechanisms underlying the potential protective effects of orange juice consumption should use in vivo metabolites and catabolites detected in this investigation at physiologic concentrations. The trial was registered at BioMed Central Ltd (www.controlledtrials.com) as ISRCTN04271658.