Home>>Signaling Pathways>> Others>> Others>>2-Sec-butyl-3-methoxypyrazine

2-Sec-butyl-3-methoxypyrazine Sale

(Synonyms: 2-仲丁基-3-甲氧基吡嗪; SBMP) 目录号 : GC61734

2-Sec-butyl-3-methoxypyrazine(SBMP)是一种甲氧基吡嗪,在瓢虫中可被检测到。

2-Sec-butyl-3-methoxypyrazine Chemical Structure

Cas No.:24168-70-5

规格 价格 库存 购买数量
500 mg
¥450.00
现货
100 mg
¥4,500.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

2-Sec-butyl-3-methoxypyrazine (SBMP) is a methoxypyrazine and can be identified in the ladybug species[1].

[1]. Erasmus Cudjoe, et al. Headspace gas chromatography-mass spectrometry: a fast approach to the identification and determination of 2-alkyl-3- methoxypyrazine pheromones in ladybugs. ?

Chemical Properties

Cas No. 24168-70-5 SDF
别名 2-仲丁基-3-甲氧基吡嗪; SBMP
Canonical SMILES CCC(C)C1=C(OC)N=CC=N1
分子式 C9H14N2O 分子量 166.22
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.0161 mL 30.0806 mL 60.1612 mL
5 mM 1.2032 mL 6.0161 mL 12.0322 mL
10 mM 0.6016 mL 3.0081 mL 6.0161 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Headspace gas chromatography-mass spectrometry: a fast approach to the identification and determination of 2-alkyl-3- methoxypyrazine pheromones in ladybugs

Analyst 2005 Feb;130(2):152-5.PMID:15665967DOI:10.1039/b410659h.

Static headspace sampling technique coupled with gas chromatography and mass spectrometry was used to investigate the presence of volatile 2-alkyl-3-methoxypyrazines in three different species of ladybugs of the Coccinellidae family. The species investigated were Coccinella septempunctata, Harmonia axyridis and Hippodemia convergens. 2-isopropyl-3-methoxypyrazine (IPMP) was identified in all three species with detectable levels of 2-Sec-butyl-3-methoxypyrazine (SBMP) and 3-isobutyl-2-methoxypyrazines (IBMP) in only Hippodemia convergens and Harmonia axyridis species. Relative amounts of 2-alkyl-3-methoxypyrazines based on body mass showed that Hippodemia convergens had the highest levels of all three methoxypyrazines and Coccinella septempunctata the least.

Not just the sum of its parts: Geographic variation and nonadditive effects of pyrazines in the chemical defence of an aposematic moth

J Evol Biol 2022 Dec 22.PMID:36546702DOI:10.1111/jeb.14142.

Chemical defences often vary within and between populations both in quantity and quality, which is puzzling if prey survival is dependent on the strength of the defence. We investigated the within- and between-population variability in chemical defence of the wood tiger moth (Arctia plantaginis). The major components of its defences, SBMP (2-Sec-butyl-3-methoxypyrazine) and IBMP (2-isobutyl-3-methoxypyrazine), are volatiles that deter bird attacks. We hypothesized that (1) variation in the chemical defences of male wood tiger moths reflects the local predation pressure; (2) observed differences in quantity and quality of defence among populations have a genetic basis; and (3) increasing concentrations of SBMP and IBMP will elicit greater aversive reactions in predators, with the two pyrazines having an additive effect on predators' avoidance. We found that (1) the chemical defence of wild moths partly reflects local predator selection: high predation pressure populations (Scotland and Georgia) had stronger chemical defences, but not lower variance, than the low-predation populations (Estonia and Finland). (2) Based on the common garden results, both genetic and environmental components seem to influence the strength of chemical defence in moth populations; and (3) IBMP alone did not provide protection against bird predators but worked against bird attacks only when combined with SBMP, and while SBMP was more effective at higher concentrations, IBMP was not. Altogether this suggests that, when it comes to pyrazine concentration, more is not always better, highlighting the importance of testing the efficacy of chemical defence and its components with relevant predators, as extrapolating from chemical data may be less than straightforward.

Characterization of alkylmethoxypyrazines contributing to earthy/bell pepper flavor in farmstead cheddar cheese

J Food Sci 2008 Nov;73(9):C632-8.PMID:19021793DOI:10.1111/j.1750-3841.2008.00948.x.

Farmstead Cheddar cheeses with natural bandage wrappings have a distinctive flavor profile that is appealing to many consumers. An earthy/bell pepper (EBP) flavor has been previously recognized in some of these cheeses. This study characterized the alkylmethoxypyrazine compounds causing EBP flavor in Farmstead Cheddar cheeses. Eight cheeses were divided into inner, outer, rind, and wrapper sections, and tested for descriptive sensory and instrumental analyses. To assess reproducibility of EBP flavor, cheeses from the same facilities were purchased and tested after 6 and 12 mo. EBP flavor was detected in four out of 8 Farmstead Cheddar cheeses by a trained sensory panel. 2-Sec-butyl-3-methoxypyrazine and 2-isopropyl-3-methoxypyrazine were identified as the main sources of EBP flavor in these cheeses by GC/O and GC/MS. In general, those alkylmethoxypyrazines were prevalent in the wrapper (106 to 730 ppb) and rind (39 to 444 ppb) sections of the cheeses. They were either not detected in inner and outer sections of the cheeses or were present at low concentrations. These results suggest that 2-Sec-butyl-3-methoxypyrazine and 2-isopropyl-3-methoxypyrazine are formed near the surface of the cheeses and migrate into the cheese during ripening. Threshold values in water and whole milk were 1 and 16 ppt for 2-Sec-butyl-3-methoxypyrazine, and 0.4 and 2.3 ppt for 2-isopropyl-3-methoxypyrazine, respectively. Sensory analysis of mild Cheddar cheese model systems confirmed that direct addition of those individual alkylmethoxypyrazines (0.4 to 20 ppb) resulted in EBP flavor.

De novo Synthesis of Chemical Defenses in an Aposematic Moth

J Insect Sci 2018 Mar 1;18(2):28.PMID:29718491DOI:10.1093/jisesa/iey020.

Many animals protect themselves from predation with chemicals, both self-made or sequestered from their diet. The potential drivers of the diversity of these chemicals have been long studied, but our knowledge of these chemicals and their acquisition mode is heavily based on specialist herbivores that sequester their defenses. The wood tiger moth (Arctia plantaginis, Linnaeus, 1758) is a well-studied aposematic species, but the nature of its chemical defenses has not been fully described . Here, we report the presence of two methoxypyrazines, 2-Sec-butyl-3-methoxypyrazine and 2-isobutyl-3-methoxypyrazine, in the moths' defensive secretions. By raising larvae on an artificial diet, we confirm, for the first time, that their defensive compounds are produced de novo rather than sequestered from their diet. Pyrazines are known for their defensive function in invertebrates due to their distinctive odor, inducing aversion and facilitating predator learning. While their synthesis has been suspected, it has never previously been experimentally confirmed. Our results highlight the importance of considering de novo synthesis, in addition to sequestration, when studying the defensive capabilities of insects and other invertebrates.

A comparison of sorptive extraction techniques coupled to a new quantitative, sensitive, high throughput GC-MS/MS method for methoxypyrazine analysis in wine

Talanta 2016 Feb 1;148:336-45.PMID:26653458DOI:10.1016/j.talanta.2015.10.086.

Methoxypyrazines are volatile compounds found in plants, microbes, and insects that have potent vegetal and earthy aromas. With sensory detection thresholds in the low ng L(-1) range, modest concentrations of these compounds can profoundly impact the aroma quality of foods and beverages, and high levels can lead to consumer rejection. The wine industry routinely analyzes the most prevalent methoxypyrazine, 2-isobutyl-3-methoxypyrazine (IBMP), to aid in harvest decisions, since concentrations decrease during berry ripening. In addition to IBMP, three other methoxypyrazines IPMP (2-isopropyl-3-methoxypyrazine), SBMP (2-Sec-butyl-3-methoxypyrazine), and EMP (2-ethyl-3-methoxypyrazine) have been identified in grapes and/or wine and can impact aroma quality. Despite their routine analysis in the wine industry (mostly IBMP), accurate methoxypyrazine quantitation is hindered by two major challenges: sensitivity and resolution. With extremely low sensory detection thresholds (~8-15 ng L(-1) in wine for IBMP), highly sensitive analytical methods to quantify methoxypyrazines at trace levels are necessary. Here we were able to achieve resolution of IBMP as well as IPMP, EMP, and SBMP from co-eluting compounds using one-dimensional chromatography coupled to positive chemical ionization tandem mass spectrometry. Three extraction techniques HS-SPME (headspace-solid phase microextraction), SBSE (stirbar sorptive extraction), and HSSE (headspace sorptive extraction) were validated and compared. A 30 min extraction time was used for HS-SPME and SBSE extraction techniques, while 120 min was necessary to achieve sufficient sensitivity for HSSE extractions. All extraction methods have limits of quantitation (LOQ) at or below 1 ng L(-1) for all four methoxypyrazines analyzed, i.e., LOQ's at or below reported sensory detection limits in wine. The method is high throughput, with resolution of all compounds possible with a relatively rapid 27 min GC oven program.