Home>>Signaling Pathways>> Microbiology & Virology>> SARS-CoV>>2-Hydroxycinnamic acid

2-Hydroxycinnamic acid Sale

(Synonyms: (E)-3-(2-羟基苯基)丙烯酸) 目录号 : GC61753

2-Hydroxycinnamicacid是从肉桂的甲醇提取物中分离出的。2-Hydroxycinnamicacid对HIV/SARS-CoVS假病毒的感染具有抑制作用,IC50为0.3mM。

2-Hydroxycinnamic acid Chemical Structure

Cas No.:614-60-8

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥495.00
现货
500 mg
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

2-Hydroxycinnamic acid is isolated from the methanol extract of Cinnamomum cassia. 2-Hydroxycinnamic acid shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2]

[1]. Tran Minh Ngoc, et al. A new coumarin and cytotoxic activities of constituents from Cinnamomum cassia. Nat Prod Commun. 2014 Apr;9(4):487-8. [2]. Min Zhuang, et al. Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral Res. 2009 Apr;82(1):73-81.

Chemical Properties

Cas No. 614-60-8 SDF
别名 (E)-3-(2-羟基苯基)丙烯酸
Canonical SMILES O=C(O)/C=C/C1=CC=CC=C1O
分子式 C9H8O3 分子量 164.16
溶解度 DMSO: 100 mg/mL (609.16 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.0916 mL 30.4581 mL 60.9162 mL
5 mM 1.2183 mL 6.0916 mL 12.1832 mL
10 mM 0.6092 mL 3.0458 mL 6.0916 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Antibiotic-Resistant Staphylococcus aureus Does Not Develop Resistance to Vanillic Acid and 2-Hydroxycinnamic acid after Continuous Exposure in Vitro

ACS Omega 2019 Sep 10;4(13):15393-15400.PMID:31572838DOI:10.1021/acsomega.9b01336.

Development of resistance to antibiotics is one of the major reasons of difficulties in treatments of diseases caused by antibiotic-resistant bacteria, and this resistance makes the investigation of alternative antimicrobials a key priority. Phenolic acids are plant- and fungi-originating natural antimicrobial products, and there is no known bacterial resistance after exposure to them. The purpose of this study was to investigate the resistance ability of bacteria against phenolic acids. Therefore, the ability of methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus to gain resistance against two phenolic acids and an antibiotic upon exposure to subinhibitory concentrations was tested. Herein, we evaluated the minimum inhibitory concentrations (MICs) of vanillic acid (VA), 2-Hydroxycinnamic acid (2-HCA), and vancomycin in the beginning of the experiment and the MICs were found to be 2.5 mg/mL VA, 1.6 mg/mL 2-HCA, and 0.01 mg/mL vancomycin for both bacteria. Following continuous treatments with increasing subinhibitory concentrations, MICs were evaluated once more. Exposure to subinhibitory concentrations of vancomycin induced the development of resistance immediately; however, resistance to both phenolic acids could not be induced. These data indicated the potential of phenolic acids to be used as effective antimicrobials in the inhibition of antibiotic-resistant pathogenic bacteria.

Hydroxycinnamic Acid from Corncob and Its Structural Analogues Inhibit Aβ40 Fibrillation and Attenuate Aβ40-Induced Cytotoxicity

J Agric Food Chem 2020 Aug 19;68(33):8788-8796.PMID:32700906DOI:10.1021/acs.jafc.0c01841.

The aggregation of amyloid-β protein (Aβ) is deemed a vital pathological feature of Alzheimer's disease (AD). Hence, inhibiting Aβ aggregation is noticed as a major tactic for the prevention and therapy of AD. Hydroxycinnamic acid, as a natural phenolic compound, is widely present in plant foods and has several biological activities including anti-inflammation, antioxidation, and neuroprotective effects. Here, it was found that hydroxycinnamic acid and its structural analogues (3-hydroxycinnamic acid, 2-Hydroxycinnamic acid, cinnamic acid, 3,4-dihydroxycinnamic acid, 2,4-dihydroxycinnamic acid, and 3,4,5-trihydroxycinnamic acid) could inhibit Aβ40 fibrillogenesis and reduce Aβ40-induced cytotoxicity in a dose-dependent manner. Among these small molecules investigated, 3,4,5-trihydroxycinnamic acid is considered to be the most effective inhibitor, which reduces the ThT fluorescence intensity to 30.79% and increases cell viability from 49.47 to 84.78% at 200 μM. Also, the results with Caenorhabditis elegans verified that these small molecules can ameliorate AD-like symptoms of worm paralysis. Moreover, molecular docking studies showed that these small molecules interact with the Aβ40 mainly via hydrogen bonding. These results suggest that hydroxycinnamic acid and its structural analogues could inhibit Aβ40 fibrillogenesis and the inhibition activity is enhanced with the increase of phenolic hydroxyl groups of inhibitors. These small molecules have huge potential to be developed into novel aggregation inhibitors in neurodegenerative disorders.

Catalysis and inhibition of tyrosinase in the presence of cinnamic acid and some of its derivatives

Int J Biol Macromol 2018 Nov;119:548-554.PMID:30063931DOI:10.1016/j.ijbiomac.2018.07.173.

The kinetic action of tyrosinase on l-tyrosine and l-Dopa as substrates in the presence of cinnamic acid and some of its derivatives has been characterized. Cinnamic acid, 2-hydroxycinnamic, 2,3 and 4-methoxycinnamic acids were seen to be inhibitors of tyrosinase being determined the type of inhibition and inhibition constants of all of them. However, 3-hydroxycinnamic, 4-hydroxycinnamic and 3,4-dihydroxycinnamic acids were seen to be substrates of tyrosinase at the same time. The kinetic constants of the catalysis of these substrates were determined and found to be perfectly correlated with the chemical shifts of the carbon with the phenolic hydroxyl group revealed by NMR. Docking studies of 2-hydroxycinnamic and 3-hydroxycinnamic acids showed that tyrosinase is able to hydroxylate 3-hydroxycinnamic acid but is unable to hydroxylate 2-Hydroxycinnamic acid.

Chemical Composition, Antioxidant Activity, Cytoprotective and In Silico Study of Ethanolic Extracts of Bougainvillea × buttiana (Var. Orange and Rose)

Molecules 2022 Oct 3;27(19):6555.PMID:36235092DOI:10.3390/molecules27196555.

Bougainvillea × buttiana is a plant widely used in traditional Mexican medicine and other parts of the world for the treatment of various health disorders. In this study, the antioxidant and cytoprotective activities of three ethanolic extracts of B. × buttiana (BxbO (Orange), BxbR1 (Rose1) and BxbR2 (Rose2)) were investigated. Antioxidant activities were determined by the oxygen radical absorbance capacity (ORAC), DPPH free radicals scavenging activity, and radical scavenging effects on nitric oxide (NO). The in vitro cytoprotective effect of the extracts against oxidative stress induced by hydrogen peroxide-(H2O2) in a model of L929 cells was also determined as well as NO uptake with or without H2O2 through the MTT assay. The results revealed that there was a difference between the compounds present in each of the extracts, with the 2-Hydroxycinnamic acid compound being observed in all the extracts. The 2-Hydroxycinnamic acid compound was tested in silico to predict its biological (PASSonline) and toxicological (Osiris Property Explorer) activity. All extracts with 1 to 4 mg/mL inhibited the activity of the NO radical. In cells exposed to 1 mg/mL of extracts followed by H2O2 exposure, cell protection ranged from 66.96 to 83.46%. The treatment of the cells with extracts prevented the morphological changes caused by H2O2. The 2-Hydroxycinnamic acid compound showed a probability of in silico antioxidant and cytoprotective activity greater than 0.5 and 0.6, respectively. Therefore, the results demonstrated that Bxb extracts exert antioxidant and protective activities against H2O2-induced oxidative stress in L929 cells.

Unraveling the Serum Metabolomic Profile of Acrylamide-Induced Cardiovascular Toxicity

J Agric Food Chem 2021 Oct 13;69(40):12012-12020.PMID:34586797DOI:10.1021/acs.jafc.1c04367.

Acrylamide has been reported as an important dietary risk factor from carbohydrate-rich processing food. However, systemic biological effects on the serum metabolomics induced by acrylamide have poorly been understood. In the present study, we evaluated the metabolic profiles in a rat serum after exposure to acrylamide using ultrahigh-performance liquid chromatography combined with quadrupole-orbitrap high-resolution mass spectrometry. The serum biochemical parameters of the treated and control groups were also determined using an automatic biochemical analyzer. Compared with the control group, 10 metabolites were significantly upregulated, including citric acid, d-(-)-fructose, gluconic acid, l-ascorbic acid 2-sulfate, 2-Hydroxycinnamic acid, valine, l-phenylalanine, prolylleucine, succinic acid, and cholic acid, while 5 metabolites were significantly downregulated, including 3-hydroxybutyric acid, 4-oxoproline, 2,6-xylidine, 4-phenyl-3-buten-2-one, and N-ethyl-N-methylcathinone in the serum of 4-week-old rats exposed to acrylamide in the high-dose group (all P < 0.05). Importantly, acrylamide exposure affected metabolites mainly involved in the citrate cycle, valine, leucine, and isoleucine biosyntheses, phenylalanine, tyrosine and tryptophan biosyntheses, and pyruvate metabolism. These results suggested that exposure to acrylamide in rats exhibited marked systemic metabolic changes and affected the cardiovascular system. This study will provide a theoretical basis for exploring the toxic mechanism and will contribute to the diagnosis and prevention of acrylamide-induced cardiovascular toxicity.