Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> Potassium Channel>>2,2,2-Trichloroethanol

2,2,2-Trichloroethanol Sale

(Synonyms: 2,2,2-三氯乙醇) 目录号 : GC60455

2,2,2-Trichloroethanol是镇静催眠药水合氯醛的活性形式,是非经典的K2P通道TREK-1和TRAAK的激动剂。

2,2,2-Trichloroethanol Chemical Structure

Cas No.:115-20-8

规格 价格 库存 购买数量
500mg
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

2,2,2-Trichloroethanol, the active form of the sedative hypnotic drug chloral hydrate, is an agonist for the nonclassical K2P channels TREK-1 (KCNK2) and TRAAK (KCNK4)[1].

2,2,2-trichloroethanol activates a nonclassical potassium channel in cerebrovascular smooth muscle and dilates the middle cerebral artery[1].

[1]. Nikhil K Parelkar , et al. 2,2,2-trichloroethanol Activates a Nonclassical Potassium Channel in Cerebrovascular Smooth Muscle and Dilates the Middle Cerebral Artery. J Pharmacol Exp Ther. 2010 Mar;332(3):803-10.

Chemical Properties

Cas No. 115-20-8 SDF
别名 2,2,2-三氯乙醇
Canonical SMILES ClC(Cl)(Cl)CO
分子式 C2H3Cl3O 分子量 149.4
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.6934 mL 33.4672 mL 66.9344 mL
5 mM 1.3387 mL 6.6934 mL 13.3869 mL
10 mM 0.6693 mL 3.3467 mL 6.6934 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

2,2,2-Trichloroethanol lengthens the circadian period of Bmal1-driven circadian bioluminescence rhythms in U2OS cells

Biochem Biophys Res Commun 2015 Jul 3;462(3):239-44.PMID:25956065DOI:10.1016/j.bbrc.2015.04.123.

2,2,2-Trichloroethanol (TCOH) is responsible for the pharmacological actions of chloral hydrate (CH), and is a major metabolite of trichloroethylene. Human exposure to TCOH is known to be increasing. Recently, it was reported that TCOH causes a significant phase delay of Per2 expression in mouse liver when injected daily over the course of several days. However, it is not clear whether TCOH directly modulates the molecular clock. In the present study we used a cell-based assay system to test this possibility. We found that the daily oscillation period of Bmal1 was lengthened to 3 h following treatment with 1.5 mM TCOH, and increased to 5 h with 3 mM TCOH treatment. However, low concentrations of TCOH had no noticeable effects. The effect of TCOH on Per2 oscillation was marginal. Interestingly, serum from rats anesthetized with CH also modulated Bmal1 period, suggesting that exposure to anesthesia should be taken into consideration for circadian rhythm studies. In summary, our study reveals a direct regulation of TCOH on molecular clock.

Protein quantification and visualization via ultraviolet-dependent labeling with 2,2,2-Trichloroethanol

Sci Rep 2019 Sep 26;9(1):13923.PMID:31558752DOI:10.1038/s41598-019-50385-9.

The incorporation of 2,2,2-Trichloroethanol in polyacrylamide gels allows for fluorescent visualization of proteins following electrophoresis. Ultraviolet-light exposure, in the presence of this trichlorinated compound, results in a covalent modification of the tryptophan indole ring that shifts the fluorescent emission into the visible range. Based on this principle, we used 2,2,2-Trichloroethanol to develop a microplate format protein quantification assay based on the fluorescent signal generated by modified proteins. We also demonstrated a specific fluorescent emission of 2,2,2-trichloroethanol-labeled protein at 450 nm, with a 310 nm excitation, resulting from modification of both tryptophan and tyrosine residues. Following optimization, this protein quantification assay displayed superior sensitivity when compared to UV absorbance at 280 nm (A280), and enabled quantification beyond the linear range permitted by the Bradford method. This 100 μL assay displayed a sensitivity of 10.5 μg in a range up to at least 200 μg. Furthermore, we extended the utility of this method through the development of a 20 μL low-volume assay, with a sensitivity of 8.7 μg tested up to 100 μg, which enabled visualization of proteins following SDS-PAGE. Collectively, these results demonstrate the utility of 2,2,2-trichloroethanol-based protein quantification and demonstrates the protein visualization in polyacrylamide gels based on 2,2,2-trichloroethanol-labeling pre-electrophoresis.

Improved protein-crystal identification by using 2,2,2-Trichloroethanol as a fluorescence enhancer

Acta Crystallogr F Struct Biol Commun 2018 May 1;74(Pt 5):307-314.PMID:29717999DOI:10.1107/S2053230X18005253.

The identification of initial lead conditions for successful protein crystallization is crucial for structural studies using X-ray crystallography. In order to reduce the number of false-negative conditions, an emerging number of fluorescence-based methods have been developed which allow more efficient identification of protein crystals and help to distinguish them from salt crystals. Detection of the native tryptophan fluorescence of protein crystals is one of the most widely used methods. However, this method can fail owing to the properties of the crystallized protein or the chemical composition of the crystallization trials. Here, a simple, fast and cost-efficient method employing 2,2,2-Trichloroethanol (TCE) has been developed. It can be performed with a standard UV-light microscope and can be applied to cases in which detection of native tryptophan fluorescence fails. In four test cases this method had no effect on the diffraction properties of the crystals and no structural changes were observed. Further evidence is provided that TCE can be added to crystallization trials during their preparation, making this method compatible with high-throughput approaches.

2,2,2-Trichloroethanol activates a nonclassical potassium channel in cerebrovascular smooth muscle and dilates the middle cerebral artery

J Pharmacol Exp Ther 2010 Mar;332(3):803-10.PMID:19955488DOI:10.1124/jpet.109.162313.

Trichloroacetaldehyde monohydrate [chloral hydrate (CH)] is a sedative/hypnotic that increases cerebral blood flow (CBF), and its active metabolite 2,2,2-Trichloroethanol (TCE) is an agonist for the nonclassical two-pore domain K(+) (K(2P)) channels TREK-1 and TRAAK. We sought to determine whether TCE dilates cerebral arteries in vitro by activating nonclassical K(+) channels. TCE dilated pressurized and perfused rat middle cerebral arteries (MCAs) in a manner consistent with activation of nonclassical K(+) channels. Dilation to TCE was inhibited by elevated external K(+) but not by an inhibitory cocktail (IC) of classical K(+) channel blockers. Patch-clamp electrophysiology revealed that, in the presence of the IC, TCE increased whole-cell currents and hyperpolarized the membrane potential of isolated MCA smooth muscle cells. Heating increased TCE-sensitive currents, indicating that the activated channel was thermosensitive. Immunofluorescence in sections of the rat MCA demonstrated that, like TREK-1, TRAAK is expressed in the smooth muscle of cerebral arteries. Isoflurane did not, however, dilate the MCA, suggesting that TREK-1 was not functional. These data indicate that TCE activated a nonclassical K(+) channel with the characteristics of TRAAK in rat MCA smooth-muscle cells. Stimulation of K(+) channels such as TRAAK in cerebral arteries may therefore explain in part how CH/TCE increases CBF.

Atomistic Model for Simulations of the Sedative Hypnotic Drug 2,2,2-Trichloroethanol

ACS Omega 2018 Nov 30;3(11):15916-15923.PMID:30556017DOI:10.1021/acsomega.8b02017.

2,2,2-Trichloroethanol (TCE) is the active form of the sedative hypnotic drug chloral hydrate, one of the oldest sleep medications in the market. Understanding of TCE's action mechanisms to its many targets, particularly within the ion channel family, could benefit from the state-of-the-art computational molecular studies. In this direction, we employed de novo modeling aided by the force field toolkit to develop CHARMM36-compatible TCE parameters. The classical potential energy function was calibrated targeting molecular conformations, local interactions with water molecules, and liquid bulk properties. Reference data comes from both tabulated thermodynamic properties and ab initio calculations at the MP2 level. TCE solvation free energy calculations in water and oil reproduce a lipophilic, yet nonhydrophobic, behavior. Indeed, the potential mean force profile for TCE partition through the phospholipid bilayer reveals the sedative's preference for the interfacial region. The calculated partition coefficient also matches experimental measures. Further validation of the proposed parameters is supported by the model's ability to recapitulate quenching experiments demonstrating TCE binding to bovine serum albumin.