Home>>Signaling Pathways>>1-Stearoyl-2-Arachidonoyl-sn-Glycerol

1-Stearoyl-2-Arachidonoyl-sn-Glycerol

(Synonyms: 1-硬脂酰-2-花生酰-SN-甘油) 目录号 : GC42044

An activator of PKC and Ras

1-Stearoyl-2-Arachidonoyl-sn-Glycerol Chemical Structure

Cas No.:65914-84-3

规格 价格 库存
5mg
¥686.00
待询
10mg
¥1,234.00
待询
25mg
¥2,775.00
待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Many protein kinase C (PKC) isoforms require activation via second messengers including Ca2+, diacylglycerol (DAG), and/or a phospholipid to phosphorylate target proteins and they initiate a variety of important signalling cascades. 1-Stearoyl-2-arachidonoyl-sn-glycerol (SAG) is a DAG that contains the ω-6 polyunsaturated fatty acid arachidonic acid in the sn-2 position and stearic acid in the sn-1 position of the glycerol backbone. It can potently activate PKCα, PKCε, and PKCδ at nM concentrations. Independent of PKC signalling, SAG competitively binds to the Ras activator RasGRP with a Ki value of 4.49 µM in Jurkat T-cells.

Chemical Properties

Cas No. 65914-84-3 SDF
别名 1-硬脂酰-2-花生酰-SN-甘油
Canonical SMILES CCCCCCCCCCCCCCCCCC(=O)OC[C@H](CO)OC(=O)CCC/C=C\C/C=C\C/C=C\C/C=C\CCCCC
分子式 C41H72O5 分子量 645
溶解度 DMF: 0.2 mg/ml,DMSO: 0.3 mg/ml,Ethanol: 10 mg/ml,PBS (pH 7.2): 0.1 mg/ml 储存条件 Store at -80°C; protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.5504 mL 7.7519 mL 15.5039 mL
5 mM 0.3101 mL 1.5504 mL 3.1008 mL
10 mM 0.155 mL 0.7752 mL 1.5504 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

AtDGK2, a novel diacylglycerol kinase from Arabidopsis thaliana, phosphorylates 1-Stearoyl-2-Arachidonoyl-sn-Glycerol and 1,2-dioleoyl-sn-glycerol and exhibits cold-inducible gene expression

J Biol Chem 2004 Feb 27;279(9):8230-41.PMID:14665624DOI:10.1074/jbc.M312187200.

Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). Both DAG and PA are implicated in signal transduction pathways. DGKs have been widely studied in animals, but their analysis in plants is fragmentary. Here, we report the cloning and biochemical characterization of AtDGK2, encoding DGK from Arabidopsis thaliana. AtDGK2 has a predicted molecular mass of 79.4 kDa and, like AtDGK1 previously reported, harbors two copies of a phorbol ester/DAG-binding domain in its N-terminal region. AtDGK2 belongs to a family of seven DGK genes in A. thaliana. AtDGK3 to AtDGK7 encode approximately 55-kDa DGKs that lack a typical phorbol ester/DAG-binding domain. Phylogenetically, plant DGKs fall into three clusters. Members of all three clusters are widely expressed in vascular plants. Recombinant AtDGK2 was expressed in Escherichia coli and biochemically characterized. The enzyme phosphorylated 1,2-dioleoyl-sn-glycerol to yield PA, exhibiting Michaelis-Menten type kinetics. Estimated K(m) and V(max) values were 125 microm for DAG and 0.25 pmol of PA min(-1) microg(-1), respectively. The enzyme was maximally active at pH 7.2. Its activity was Mg(2+)-dependent and affected by the presence of detergents, salts, and the DGK inhibitor R59022, but not by Ca(2+). AtDGK2 exhibited substrate preference for unsaturated DAG analogues (i.e. 1-Stearoyl-2-Arachidonoyl-sn-Glycerol and 1,2-dioleoyl-sn-glycerol). The AtDGK2 gene is expressed in various tissues of the Arabidopsis plant, including leaves, roots, and flowers, as shown by Northern blot analysis and promoter-reporter gene fusions. We found that AtDGK2 is induced by exposure to low temperature (4 degrees C), pointing to a role in cold signal transduction.

Implication of acyl chain of diacylglycerols in activation of different isoforms of protein kinase C

FASEB J 2001 Dec;15(14):2595-601.PMID:11726535DOI:10.1096/fj.01-0753int.

We synthesized diacylglycerols (DAGs) containing omega-6 or omega-3 polyunsaturated fatty acids [i.e., 1-Stearoyl-2-Arachidonoyl-sn-Glycerol (SAG), 1-stearoyl-2-docosahexaenoyl-sn-glycerol (SDG), and 1-stearoyl-2-eicosapentaenoyl-sn-glycerol (SEG)] and assessed their efficiency on activation of conventional (alpha, beta I, gamma) and novel (epsilon, delta) protein kinase C (PKC). SAG exerted significantly higher stimulatory effects than SDG and SEG on activation of PKC alpha and PKC delta. Activation of PKC beta I by SEG and SDG was higher than that by SAG. Activation of PKC gamma did not differ significantly among DAG molecular species. Addition of SAG to assays containing SEG and SDG exerted additive effects on activation of alpha and epsilon, but not on beta I and gamma, isoforms of PKC. SDG- and SEG-induced activation of PKC delta was significantly curtailed by the addition of SAG. Three DAG species significantly curtailed the PMA-induced activation of beta Iota, gamma, and delta, but not of alpha and epsilon, isoforms of PKC. Our study demonstrates for the first time that in vitro activation of different PKC isoenzymes vary in response to different DAG species, and one can envisage that this differential regulation may be responsible for their in vivo effects on target organs.

Assay and inhibition of diacylglycerol lipase activity

Bioorg Med Chem Lett 2012 Jul 15;22(14):4585-92.PMID:22738638DOI:10.1016/j.bmcl.2012.05.101.

A series of N-formyl-α-amino acid esters of β-lactone derivatives structurally related to tetrahydrolipstatin (THL) and O-3841 were synthesized that inhibit human and murine diacylglycerol lipase (DAGL) activities. New ether lipid reporter compounds were developed for an in vitro assay to efficiently screen inhibitors of 1,2-diacyl-sn-glycerol hydrolysis and related lipase activities using fluorescence resonance energy transfer (FRET). A standardized thin layer chromatography (TLC) radioassay of diacylglycerol lipase activity utilizing the labeled endogenous substrate [1″-(14)C]1-Stearoyl-2-Arachidonoyl-sn-Glycerol with phosphorimaging detection was used to quantify inhibition by following formation of the initial product [1″-(14)C]2-arachidonoylglycerol and further hydrolysis under the assay conditions to [1-(14)C]arachidonic acid.

Effect of Site-Specific Peptide-Tag Labeling on the Biocatalytic Properties of Thermoalkalophilic Lipase from Geobacillus thermocatenulatus

Chembiochem 2018 Feb 16;19(4):369-378.PMID:29193524DOI:10.1002/cbic.201700466.

Tailor-made peptides were investigated for site-specific tag labeling of Geobacillus thermocatenulatus lipase (GTL). GTL was first genetically modified by introducing a unique cysteine on the lid site of the enzyme to produce two variants (GTLσ-A193C and GTLσ-S196C). Chemical modification was performed by using a small library of cysteine-containing peptides. The synthesized peptide-lipase biocatalysts were highly stable, more active, more specific, and more selective toward different substrates than unmodified GTL. Very high enzyme thermostability of GTLσ-A193C modified with peptides Ac-Cys-Phe-Gly-Phe-Gly-Phe-CONH2 (1) and Ac-Cys-Phe-Phe-CONH2 (2) (>95 % activity after 24 h at 60 °C) was observed. The incorporation of 1 and 2 in GTLσ-S196C improved its catalytic activity in the hydrolysis of p-nitrophenyl butyrate by factors of three and greater than five, respectively. The specificity for short-chain versus long-chain esters was also strongly improved. The diacylglycerol activity of GTLσ-S196C was enhanced more than tenfold by the incorporation of 1 and more than threefold by modification of this variant with Ac-Cys-(Arg)7 -CONH2 (6) in the hydrolysis of 1-Stearoyl-2-Arachidonoyl-sn-Glycerol. The enantioselectivity of GTLσ-S196C increased for all formed bioconjugates, and the GTLσ-S196C-1 conjugate was the most active and selective in the hydrolysis of dimethylphenyl glutarate at pH 7 (72 % ee), also showing an inversion in the enzyme enantiopreference.

Diacylglycerols containing Omega 3 and Omega 6 fatty acids bind to RasGRP and modulate MAP kinase activation

J Biol Chem 2004 Jan 9;279(2):1176-83.PMID:14583629DOI:10.1074/jbc.M306252200.

We elucidated the effects of different diacylglycerols (DAGs), i.e. 1-Stearoyl-2-Arachidonoyl-sn-Glycerol (SAG), 1-stearoyl-2-docosahexaenoyl-sn-glycerol (SDG), and 1-stearoyl-2-eicosapentaenoyl-sn-glycerol (SEG), on [3H]PDBu binding to RasGRP. The competition studies with these DAGs on [3H]PDBu binding to RasGRP revealed different Ki values for these DAG molecular species. Furthermore, we transfected human Jurkat T cells by a plasmid containing RasGRP and assessed the implication of endogenous DAGs on activation of MAP kinases ERK1/ERK2, induced by phorbol-12-myristate-13-acetate (PMA). In control cells, GF109203X, a protein kinase C inhibitor, inhibited ERK1/ERK2 activation. However, this agent curtailed but failed to completely diminish ERK1/ERK2 phosphorylation in RasGRP-overexpressing cells, though calphostin C, a DAG binding inhibitor, suppressed the phosphorylation of MAP kinases in these cells. In cells incubated with arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), PMA induced the production of endogenous DAGs containing these fatty acids, respectively: DAG-AA, DAG-DHA, and DAG-EPA. The inhibition of production of DAG-AA and DAG-DHA significantly inhibited MAP kinase activation in RasGRP overexpressing, but not in control, cells. Our study demonstrates that three DAG molecular species bind to RasGRP, but only DAG-AA and DAG-DHA participate in the modulation of RasGRP-mediated activation of MAP kinases in Jurkat T cells.