Home>>Phenylacetyl Coenzyme A

Phenylacetyl Coenzyme A

(Synonyms: Phenylacetyl Coenzyme A) 目录号 : GC44626

A key intermediate in aerobic catabolism of phenylacetate in bacteria

Phenylacetyl Coenzyme A Chemical Structure

Cas No.:7532-39-0

规格 价格 库存 购买数量
1mg
¥2,638.00
现货
5mg
¥11,872.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Phenylacetyl coenzyme A (CoA) is a key intermediate in aerobic catabolism of phenylacetate in bacteria such as Pseudomonas, when cultured in minimal media using phenylacetate as the sole carbon source. It is a precursor in the synthesis of the antibiotic penicillin G found in industrial strains of P. chrysogenum. Phenylacetyl-CoA also acts as an effector molecule of the TetR family transcriptional repressor PaaR in T. thermophilus and the GntR family transcriptional regulator PaaX in E. coli and Pseudomonas, binding to each protein to induce derepression of various genes.

Chemical Properties

Cas No. 7532-39-0 SDF
别名 Phenylacetyl Coenzyme A
Canonical SMILES O[C@H]1[C@H](N2C=NC3=C2N=CN=C3N)O[C@H](COP(OP(OCC(C)(C)[C@@H](O)C(NCCC(NCCSC(CC4=CC=CC=C4)=O)=O)=O)(O)=O)(O)=O)[C@H]1OP(O)(O)=O
分子式 C29H42N7O17P3S• XNa 分子量 885.7
溶解度 PBS (pH 7.2): 10 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.1291 mL 5.6453 mL 11.2905 mL
5 mM 0.2258 mL 1.1291 mL 2.2581 mL
10 mM 0.1129 mL 0.5645 mL 1.1291 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Phenylacetyl Coenzyme A, Not Phenylacetic Acid, Attenuates CepIR-Regulated Virulence in Burkholderia cenocepacia

Appl Environ Microbiol 2019 Nov 27;85(24):e01594-19.PMID:31585996DOI:10.1128/AEM.01594-19.

During phenylalanine catabolism, phenylacetic acid (PAA) is converted to Phenylacetyl Coenzyme A (PAA-CoA) by a ligase, PaaK, and then PAA-CoA is epoxidized by a multicomponent monooxygenase, PaaABCDE, before further degradation through the tricarboxylic acid (TCA) cycle. In the opportunistic pathogen Burkholderia cenocepacia, loss of paaABCDE attenuates virulence factor expression, which is under the control of the LuxIR-like quorum sensing (QS) system, CepIR. To further investigate the link between CepIR-regulated virulence and PAA catabolism, we created knockout mutants of the first step of the pathway (PAA-CoA synthesis by PaaK) and characterized them in comparison to a paaABCDE mutant using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and virulence assays. We found that while loss of PaaABCDE decreased virulence, deletion of the paaK genes resulted in a more virulent phenotype than that of the wild-type strain. Deletion of either paaK or paaABCDE led to higher levels of released PAA but no differences in levels of internal accumulation compared to the wild-type level. While we found no evidence of direct cepIR downregulation by PAA-CoA or PAA, a low-virulence cepR mutant reverted to a virulent phenotype upon removal of the paaK genes. On the other hand, removal of paaABCDE in the cepR mutant did not impact its attenuated phenotype. Together, our results suggest an indirect role for PAA-CoA in suppressing B. cenocepacia CepIR-activated virulence.IMPORTANCE The opportunistic pathogen Burkholderia cenocepacia uses a chemical signal process called quorum sensing (QS) to produce virulence factors. In B. cenocepacia, QS relies on the presence of the transcriptional regulator CepR which, upon binding QS signal molecules, activates virulence. In this work, we found that even in the absence of CepR, B. cenocepacia can elicit a pathogenic response if phenylacetyl-CoA, an intermediate of the phenylacetic acid degradation pathway, is not produced. Instead, accumulation of phenylacetyl-CoA appears to attenuate pathogenicity. Therefore, we have discovered that it is possible to trigger virulence in the absence of CepR, challenging the classical view of activation of virulence by this QS mechanism. Our work provides new insight into the relationship between metabolism and virulence in opportunistic bacteria. We propose that in the event that QS signaling molecules cannot accumulate to trigger a pathogenic response, a metabolic signal can still activate virulence in B. cenocepacia.

Phenylacetyl Coenzyme A is an effector molecule of the TetR family transcriptional repressor PaaR from Thermus thermophilus HB8

J Bacteriol 2011 Sep;193(17):4388-95.PMID:21725002DOI:10.1128/JB.05203-11.

Phenylacetic acid (PAA) is a common intermediate in the catabolic pathways of several structurally related aromatic compounds. It is converted into Phenylacetyl Coenzyme A (PA-CoA), which is degraded to general metabolites by a set of enzymes. Within the genome of the extremely thermophilic bacterium Thermus thermophilus HB8, a cluster of genes, including a TetR family transcriptional regulator, may be involved in PAA degradation. The gene product, which we named T. thermophilus PaaR, negatively regulated the expression of the two operons composing the gene cluster in vitro. T. thermophilus PaaR repressed the target gene expression by binding pseudopalindromic sequences, with a consensus sequence of 5'-CNAACGNNCGTTNG-3', surrounding the promoters. PA-CoA is a ligand of PaaR, with a proposed binding stoichiometry of 1:1 protein monomer, and was effective for transcriptional derepression. Thus, PaaR is a functional homolog of PaaX, a GntR transcriptional repressor found in Escherichia coli and Pseudomonas strains. A three-dimensional structure of T. thermophilus PaaR was predicted by homology modeling. In the putative structure, PaaR adopts the typical three-dimensional structure of the TetR family proteins, with 10 α-helices. A positively charged surface at the center of the molecule is similar to the acyl-CoA-binding site of another TetR family transcriptional regulator, T. thermophilus FadR, which is involved in fatty acid degradation. The CoA moiety of PA-CoA may bind to the center of the PaaR molecule, in a manner similar to the binding of the CoA moiety of acyl-CoA to FadR.

Molecular characterization of the acyl-coenzyme A:isopenicillin N acyltransferase gene (penDE) from Penicillium chrysogenum and Aspergillus nidulans and activity of recombinant enzyme in Escherichia coli

J Bacteriol 1990 Oct;172(10):5908-14.PMID:2120195DOI:10.1128/jb.172.10.5908-5914.1990.

The final step in the biosynthesis of beta-lactam antibiotics in Penicillium chrysogenum and Aspergillus nidulans involves removal of the L-alpha-aminoadipyl side chain from isopenicillin N (IPN) and exchange with a nonpolar side chain. The enzyme catalyzing this reaction, acyl-coenzyme A:isopenicillin N acyltransferase (acyltransferase), was purified from P. chrysogenum and A. nidulans. Based on NH2-terminal amino acid sequence information, the acyltransferase gene (penDE) from P. chrysogenum and A. nidulans were cloned. In both organisms, penDE was located immediately downstream from the isopenicillin N synthetase gene (pcbC) and consisted of four exons encoding an enzyme of 357 amino acids (approximately 40 kilodaltons [kDa]). The DNA coding sequences showed approximately 73% identity, while the amino acid sequences were approximately 76% identical. Noncoding DNA regions (including the region between pcbC and penDE) were not conserved. Acyltransferase activity from Escherichia coli producing the 40-kDa protein accepted either 6-aminopenicillanic acid or IPN as the substrate and made a penicillinase-sensitive antibiotic in the presence of Phenylacetyl Coenzyme A. Therefore, a single gene is responsible for converting IPN to penicillin G. The active form of the enzyme may result from processing of the 40-kDa monomeric precursor to a heterodimer containing subunits of 11 and 29 kDa.

Phenoxymethylpenicillin amidohydrolases from Penicillium chrysogenum

FEBS Lett 1996 Sep 23;394(1):31-3.PMID:8925921DOI:10.1016/0014-5793(96)00925-8.

A phenoxymethylpenicillin amidohydrolase which hydrolyses phenoxymethylpenicillin to 6-aminopenicillanic acid (6-APA) has been isolated from two species of Penicillium chrysogenum. The amidohydrolase had a molecular mass of approx. 42 kDa. Its activity with benzylpenicillin as substrate was only 1.5% of that with phenoxymethylpenicillin and it was inhibited by its products. No penicillin formation from 6-APA and phenoxyacetyl or Phenylacetyl Coenzyme A was observed. The enzyme is thus distinct from the Phenylacetyl Coenzyme A:6-APA acyltransferase, which also has amidohydrolase activity and is involved in the final stages of the biosynthesis of penicillins.

Involvement of the TetR-Type Regulator PaaR in the Regulation of Pristinamycin I Biosynthesis through an Effect on Precursor Supply in Streptomyces pristinaespiralis

J Bacteriol 2015 Jun 15;197(12):2062-71.PMID:25868645DOI:10.1128/JB.00045-15.

Pristinamycin I (PI), produced by Streptomyces pristinaespiralis, is a streptogramin type B antibiotic, which contains two proteinogenic and five aproteinogenic amino acid precursors. PI is coproduced with pristinamycin II (PII), a member of streptogramin type A antibiotics. The PI biosynthetic gene cluster has been cloned and characterized. However, thus far little is understood about the regulation of PI biosynthesis. In this study, a TetR family regulator (encoded by SSDG_03033) was identified as playing a positive role in PI biosynthesis. Its homologue, PaaR, from Corynebacterium glutamicum serves as a transcriptional repressor of the paa genes involved in phenylacetic acid (PAA) catabolism. Herein, we also designated the identified regulator as PaaR. Deletion of paaR led to an approximately 70% decrease in PI production but had little effect on PII biosynthesis. Identical to the function of its homologue from C. glutamicum, PaaR is also involved in the suppression of paa expression. Given that Phenylacetyl Coenzyme A (PA-CoA) is the common intermediate of the PAA catabolic pathway and the biosynthetic pathway of L-phenylglycine (L-Phg), the last amino acid precursor for PI biosynthesis, we proposed that derepression of the transcription of paa genes in a ΔpaaR mutant possibly diverts more PA-CoA to the PAA catabolic pathway, thereby with less PA-CoA metabolic flux toward L-Phg formation, thus resulting in lower PI titers. This hypothesis was verified by the observations that PI production of a ΔpaaR mutant was restored by L-Phg supplementation as well as by deletion of the paaABCDE operon in the ΔpaaR mutant. Altogether, this study provides new insights into the regulation of PI biosynthesis by S. pristinaespiralis. Importance: A better understanding of the regulation mechanisms for antibiotic biosynthesis will provide valuable clues for Streptomyces strain improvement. Herein, a TetR family regulator PaaR, which serves as the repressor of the transcription of paa genes involved in phenylacetic acid (PAA) catabolism, was identified as playing a positive role in the regulation of pristinamycin I (PI) by affecting the supply of one of seven amino acid precursors, L-phenylglycine, in Streptomyces pristinaespiralis. To our knowledge, this is the first report describing the interplay between PAA catabolism and antibiotic biosynthesis in Streptomyces strains. Considering that the PAA catabolic pathway and its regulation by PaaR are widespread in antibiotic-producing actinomycetes, it could be suggested that PaaR-dependent regulation of antibiotic biosynthesis might commonly exist.