Home>>Lipids>> Endocannabinoid/Endocannabinoid-like>>Heptadecanoyl Ethanolamide

Heptadecanoyl Ethanolamide

目录号 : GC41487

A synthetic analog of palmitoyl ethanolamide

Heptadecanoyl Ethanolamide Chemical Structure

Cas No.:53832-59-0

规格 价格 库存 购买数量
5mg
¥839.00
现货
10mg
¥1,593.00
现货
50mg
¥6,716.00
现货
100mg
¥11,751.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

101

客户使用产品发表文献 1

产品文档

Quality Control & SDS

View current batch:

产品描述

Palmitoyl ethanolamide (PEA) is an endogenous cannabinoid found in brain, liver, and other mammalian tissues. PEA has also been isolated from egg yolk, and found to have antianaphylactic and anti-inflammatory activity in vitro. Heptadecanoyl ethanolamide is a synthetic analog of PEA which incorporates an odd-numbered (17-carbon) fatty acid chain. This analog is unlikely to be present in any natural tissue, and so can be used as an internal standard for quantitative analysis. Heptadecanoyl ethanolamide potentiates the Ca2+ influx response to arachidonyl ethanolamide several fold in cells expressing human recombinant VR1.

Chemical Properties

Cas No. 53832-59-0 SDF
Canonical SMILES CCCCCCCCCCCCCCCCC(=O)NCCO
分子式 C19H39NO2 分子量 313.5
溶解度 DMF: 2 mg/ml,DMSO: 2.5 mg/ml,Ethanol: 4 mg/ml,Ethanol:PBS (1:10): 10 µ g/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.1898 mL 15.949 mL 31.8979 mL
5 mM 0.638 mL 3.1898 mL 6.3796 mL
10 mM 0.319 mL 1.5949 mL 3.1898 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Untargeted serum metabolomic profiling for early detection of Schistosoma mekongi infection in mouse model

Front Cell Infect Microbiol 2022 Aug 18;12:910177.PMID:36061860DOI:10.3389/fcimb.2022.910177.

Mekong schistosomiasis is a parasitic disease caused by blood flukes in the Lao People's Democratic Republic and in Cambodia. The standard method for diagnosis of schistosomiasis is detection of parasite eggs from patient samples. However, this method is not sufficient to detect asymptomatic patients, low egg numbers, or early infection. Therefore, diagnostic methods with higher sensitivity at the early stage of the disease are needed to fill this gap. The aim of this study was to identify potential biomarkers of early schistosomiasis using an untargeted metabolomics approach. Serum of uninfected and S. mekongi-infected mice was collected at 2, 4, and 8 weeks post-infection. Samples were extracted for metabolites and analyzed with a liquid chromatography-tandem mass spectrometer. Metabolites were annotated with the MS-DIAL platform and analyzed with Metaboanalyst bioinformatic tools. Multivariate analysis distinguished between metabolites from the different experimental conditions. Biomarker screening was performed using three methods: correlation coefficient analysis; feature important detection with a random forest algorithm; and receiver operating characteristic (ROC) curve analysis. Three compounds were identified as potential biomarkers at the early stage of the disease: Heptadecanoyl Ethanolamide; picrotin; and theophylline. The levels of these three compounds changed significantly during early-stage infection, and therefore these molecules may be promising schistosomiasis markers. These findings may help to improve early diagnosis of schistosomiasis, thus reducing the burden on patients and limiting spread of the disease in endemic areas.

Quantitative profiling of endocannabinoids and related compounds in rat brain using liquid chromatography-tandem electrospray ionization mass spectrometry

Anal Biochem 2007 Jan 15;360(2):216-26.PMID:17141174DOI:10.1016/j.ab.2006.10.039.

A sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is described for the simultaneous identification and quantification of eight endocannabinoid (EC) or related "entourage" compounds in rat brain tissue. Analytes were extracted and purified from rat brain tissue using an ethyl acetate/hexane solvent extraction, followed by a solid phase extraction (SPE) protocol. Chromatographic separation was achieved using a gradient elution, with a mobile phase of acetonitrile, formic acid, and ammonium acetate, at pH 3.6. A Thermo Hypersil C8 HyPurity Advance column (100x2.1 mm i.d., 3 microm) was used with a flow rate of 0.3 ml/min). Anandamide (AEA), 2-arachidonyl glycerol (2-AG), 2-arachidonylglyceryl ether (noladin ether), O-arachidonyl ethanolamide (virodhamine), 2-linoleoyl glycerol (2-LG), arachidonyl glycine, oleoyl ethanolamide (OEA), and palmitoyl ethanolamide (PEA) were quantified by positive ion tandem electrospray ionization mass spectrometry. Internal standards were deuterated AEA, deuterated 2-AG, and Heptadecanoyl Ethanolamide (HEA). Linearity was proven over the range of 25 fmol to 250 pmol, with a limit of detection of 25 fmol on column for all analytes except 2-AG, noladin ether, and 2-LG (250 fmol). This corresponded to a limit of quantification in biological tissue of 10 pmol/g for all analytes except 2-AG (100 pmol/g). Intra- and interday precision in biological tissue was routinely approximately 20% or lower, and accuracy was between 65% and 155%. This method was used to quantitatively profile regional differences in nine discrete rat brain regions for AEA, 2-AG, 2-LG, OEA, PEA, noladin ether, virodhamine, and arachidonyl glycine.