Home>>Signaling Pathways>> GPCR/G protein>> FFAR1 (GPR40)>>GPR40 Agonist 2

GPR40 Agonist 2 Sale

目录号 : GC31634

GPR40Agonist2是GPR40激动剂,可用于糖尿病的研究。

GPR40 Agonist 2 Chemical Structure

Cas No.:1147729-48-3

规格 价格 库存 购买数量
1mg
¥30,167.00
现货
5mg
¥74,345.00
现货
10mg
¥127,717.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

GPR40 Agonist 2 is a GPR40 agonist that can be used in the research of diabetes, extracted from patent WO2009054479A1.

GPR40 Agonist 2 is a GPR40 agonist that can be used in the research of diabetes[1].

[1]. SHIMADA, Takashi. SPIRO-RING COMPOUND AND USE THEREOF FOR MEDICAL PURPOSES. WO 2009054479 A1.

Chemical Properties

Cas No. 1147729-48-3 SDF
Canonical SMILES OC(C[C@H](C#CC)C(C=C1)=CC=C1OCC2=CCCC3(CCCCC3)C2)=O
分子式 C24H30O3 分子量 366.49
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.7286 mL 13.6429 mL 27.2859 mL
5 mM 0.5457 mL 2.7286 mL 5.4572 mL
10 mM 0.2729 mL 1.3643 mL 2.7286 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

PPARγ signaling and emerging opportunities for improved therapeutics

Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor that regulates glucose and lipid metabolism, endothelial function and inflammation. Rosiglitazone (RGZ) and other thiazolidinedione (TZD) synthetic ligands of PPARγ are insulin sensitizers that have been used for the treatment of type 2 diabetes. However, undesirable side effects including weight gain, fluid retention, bone loss, congestive heart failure, and a possible increased risk of myocardial infarction and bladder cancer, have limited the use of TZDs. Therefore, there is a need to better understand PPARγ signaling and to develop safer and more effective PPARγ-directed therapeutics. In addition to PPARγ itself, many PPARγ ligands including TZDs bind to and activate G protein-coupled receptor 40 (GPR40), also known as free fatty acid receptor 1. GPR40 signaling activates stress kinase pathways that ultimately regulate downstream PPARγ responses. Recent studies in human endothelial cells have demonstrated that RGZ activation of GPR40 is essential to the optimal propagation of PPARγ genomic signaling. RGZ/GPR40/p38 MAPK signaling induces and activates PPARγ co-activator-1α, and recruits E1A binding protein p300 to the promoters of target genes, markedly enhancing PPARγ-dependent transcription. Therefore in endothelium, GPR40 and PPARγ function as an integrated signaling pathway. However, GPR40 can also activate ERK1/2, a proinflammatory kinase that directly phosphorylates and inactivates PPARγ. Thus the role of GPR40 in PPARγ signaling may have important implications for drug development. Ligands that strongly activate PPARγ, but do not bind to or activate GPR40 may be safer than currently approved PPARγ agonists. Alternatively, biased GPR40 agonists might be sought that activate both p38 MAPK and PPARγ, but not ERK1/2, avoiding its harmful effects on PPARγ signaling, insulin resistance and inflammation. Such next generation drugs might be useful in treating not only type 2 diabetes, but also diverse chronic and acute forms of vascular inflammation such as atherosclerosis and septic shock.

GPR40 agonist inhibits NLRP3 inflammasome activation via modulation of nuclear factor-κB and sarco/endoplasmic reticulum Ca2+-ATPase

The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a multi-protein intracellular complex that activates proinflammatory cytokines, including interleukin (IL)-1β and IL-18. Inflammasome activation is related to metabolic inflammation, such as the progression of non-alcoholic steatohepatitis. Fasiglifam (TAK875), a selective G-protein coupled receptor 40 (GPR40) agonist with high affinity, significantly improves glucose-dependent insulin secretion and weight gain without hypoglycemia. Interestingly, we found that two GPR40 agonists, TAK875 and AMG1638, suppressed activation of the NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs). TAK875 inhibited inflammasome activation by blocking formation of apoptosis-associated speck-like protein containing a CARD (ASC), an inflammasome component. TAK875 also suppressed NLRP3 inflammasome-induced pyroptosis of BMDMs. Moreover, nuclear factor-kappa B (NF-κB)-dependent priming of the NLRP3 inflammasome was partially inhibited by TAK875 and AMG1638. The intracellular Ca2+ increase caused by ATP, nigericin (pore-forming toxin), or endoplasmic reticulum stress activates the NLRP3 inflammasome. Pre-exposure of BMDMs to TAK875 suppressed the ATP-induced intracellular Ca2+ increase, which was reversed by thapsigargin, a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor. Oral administration of mice with TAK875 suppressed the increase in serum IL-1β in mice treated with lipopolysaccharide/D-galactosamine in vivo. These findings indicate that the free fatty acid-sensing GPR40 plays a key role in the NLRP3 inflammasome pathway.

Design and Identification of a GPR40 Full Agonist ( SCO-267) Possessing a 2-Carbamoylphenyl Piperidine Moiety

GPR40/FFAR1 is a G-protein-coupled receptor expressed in pancreatic β-cells and enteroendocrine cells. GPR40 activation stimulates secretions of insulin and incretin, both of which are the pivotal regulators of glycemic control. Therefore, a GPR40 agonist is an attractive target for the treatment of type 2 diabetes mellitus. Using the reported biaryl derivative 1, we shifted the hydrophobic moiety to the terminal aryl ring and replaced the central aryl ring with piperidine, generating 2-(4,4-dimethylpentyl)phenyl piperidine 4a, which had improved potency for GPR40 and high lipophilicity. We replaced the hydrophobic moiety with N-alkyl-N-aryl benzamides to lower the lipophilicity and restrict the N-alkyl moieties to the presumed lipophilic pocket using the intramolecular π-π stacking of cis-preferential N-alkyl-N-aryl benzamide. Among these, orally available (3S)-3-cyclopropyl-3-(2-((1-(2-((2,2-dimethylpropyl)(6-methylpyridin-2-yl)carbamoyl)-5-methoxyphenyl)piperidin-4-yl)methoxy)pyridin-4-yl)propanoic acid (SCO-267) effectively stimulated insulin secretion and GLP-1 release and ameliorated glucose tolerance in diabetic rats via GPR40 full agonism.

Synthesis, molecular docking, dynamic simulation and pharmacological characterization of potent multifunctional agent (dual GPR40-PPARγ agonist) for the treatment of experimental type 2 diabetes

The current manuscript describes two molecules that were designed against PPARγ and GPR40 receptors. The preparation of the compounds was carried out following a synthetic route of multiple steps. Then, the mRNA expression levels of PPARγ, GLUT4, and GPR40 induced by compounds were measured and quantified in adipocyte and β-pancreatic cell cultures. The synthesized compound 1 caused an increase in the 4-fold expression of mRNA of PPARγ regarding the control and had a similar behavior to the pioglitazone, while compound 2 only increased 2-fold the expression. Also, the compound 1 increased to 7-fold the GLUT4 expression levels, respect to the control and twice against the pioglitazone. On the other hand, the 1 increase 3-fold GPR40 expression, and compound 2 had a minor activity. Besides, 1 and 2 showed a moderated increase on insulin secretion and calcium mobilization versus the glibenclamide. Based on the molecular docking studies, the first compound had a similar conformation to co-crystal ligands into the binding site of both receptors. The poses were docked keeping the most important interactions and maintaining the interaction along the Molecular Dynamics simulation (20 ns). Finally, compound (1) showed an antihyperglycemic effect at 5 mg/kg, however at higher doses of 25 mg/kg it controlled blood glucose levels associated with feeding intake and without showing the adverse effects associated with insulin secretagogues (hypoglycemia). For these reasons, we have concluded that molecule 1 acts as a dual PPARγ and GPR40 agonist offering a better glycemic control than current treatments.

Vincamine as a GPR40 agonist improves glucose homeostasis in type 2 diabetic mice

Vincamine, a monoterpenoid indole alkaloid extracted from the Madagascar periwinkle, is clinically used for the treatment of cardio-cerebrovascular diseases, while also treated as a dietary supplement with nootropic function. Given the neuronal protection of vincamine and the potency of β-cell amelioration in treating type 2 diabetes mellitus (T2DM), we investigated the potential of vincamine in protecting β-cells and ameliorating glucose homeostasis in vitro and in vivo. Interestingly, we found that vincamine could protect INS-832/13 cells function by regulating G-protein-coupled receptor 40 (GPR40)/cAMP/Ca2+/IRS2/PI3K/Akt signaling pathway, while increasing glucose-stimulated insulin secretion (GSIS) by modulating GPR40/cAMP/Ca2+/CaMKII pathway, which reveals a novel mechanism underlying GPR40-mediated cell protection and GSIS in INS-832/13 cells. Moreover, administration of vincamine effectively ameliorated glucose homeostasis in either HFD/STZ or db/db type 2 diabetic mice. To our knowledge, our current work might be the first report on vincamine targeting GPR40 and its potential in the treatment of T2DM.