Home>>Signaling Pathways>> Ubiquitination/ Proteasome>> Proteasome>>Epoxomicin

Epoxomicin Sale

(Synonyms: 环氧酶素; BU-4061T) 目录号 : GC12494

A highly selective proteasome inhibitor

Epoxomicin Chemical Structure

Cas No.:134381-21-8

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥3,434.00
现货
1mg
¥1,029.00
现货
5mg
¥2,804.00
现货
20mg
¥8,715.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Cell experiment:[1]

Cell lines

HEK293T cells

Preparation method

The solubility of this compound in DMSO is >10 mM. General tips for obtaining a higher concentration: Please warm the tube at 37 °C for 10 minutes and/or shake it in the ultrasonic bath for a while.Stock solution can be stored below -20°C for several months.

Reaction Conditions

Incubated at 0.2 μM or 2 μM epoxomicin for 1 hour

Applications

Peptides were degraded by proteasome from cytosolic, mitochondrial, and nuclear proteins. Epoxomicin is a proteasome inhibitor. It decreased the levels of the majority of intracellular peptides, companying with inhibition of the proteasome beta-2 and beta-5 subunits in HEK293T cells.

Animal experiment:[2]

Animal models

C57BL6

Dosage form

Epoxomicin (0.58 mg/kg) solubilized in 10% DMSO/PBS were injected i.p. daily for 6 days 

Applications

Epoxomicin reduced inflammation in response to picrylchloride. Epoxomicin potently inhibited the irritant-associated inflammatory response by 95% when ear edema measurements were made 24 hr postchallenge.

Other notes

Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal.

References:

1. Fricker LD1, Gelman JS, Castro LM et al. Peptidomic analysis of HEK293T cells: effect of the proteasome inhibitor epoxomicin on intracellular peptides. J Proteome Res. 2012 Mar 2;11(3):1981-90.

2. Meng L1, Mohan R, Kwok BH et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10403-8.

产品描述

Epoxomicin was originally isolated from the culture medium of an Actinomycetes strain based on its in vivo antitumor activity against murine B16 melanoma. Epoxomicin is a naturally occurring selective proteasome inhibitor with anti-inflammatory activity. [1] Epoxomicin primarily inhibits the activity of CTRL (chymotrypsin-like proteasome).

The novel α-epoxy ketone moiety of Epoxomicin forms covalent bonds with residues in particular catalytic subunits of the enzyme, disabling activity. The trypsin-like and peptidyl-glutamyl peptide hydrolyzing behaviors of the proteasome were both inhibited by Epoxomicin as well (at 100 and 1,000-fold slower rates, respectively). The ubiquitin-proteasome pathway heavily regulates bone formation, and Epoxomicin was shown to increase both bone volume and bone formation rates in rodents.

Another study demonstrates that exposure to Epoxomicin and other proteasome inhibitors leads to dopaminergic cell death, producing a model of Parkinson's disease in vivo. Epoxomicin is an inhibitor of 20S Proteasome. [2]

References:
1. Meng, L; Mohan, R; Kwok, BH; Elofsson, M; Sin, N; Crews, CM (1999). "Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity". PNAS 96 (18): 10403–10408.
2. Epoxomicin, Santa Cruz Biotechnology.

Chemical Properties

Cas No. 134381-21-8 SDF
别名 环氧酶素; BU-4061T
化学名 (2S,3S)-2-[[(2S,3S)-2-[acetyl(methyl)amino]-3-methylpentanoyl]amino]-N-[(2S,3R)-3-hydroxy-1-[[(2S)-4-methyl-1-[(2R)-2-methyloxiran-2-yl]-1-oxopentan-2-yl]amino]-1-oxobutan-2-yl]-3-methylpentanamide
Canonical SMILES CCC(C)C(C(=O)NC(C(C)O)C(=O)NC(CC(C)C)C(=O)C1(CO1)C)NC(=O)C(C(C)CC)N(C)C(=O)C
分子式 C28H50N4O7 分子量 554.7
溶解度 ≥ 27.74mg/mL in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.8028 mL 9.0139 mL 18.0278 mL
5 mM 0.3606 mL 1.8028 mL 3.6056 mL
10 mM 0.1803 mL 0.9014 mL 1.8028 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

From epoxomicin to carfilzomib: chemistry, biology, and medical outcomes

The initial enthusiasm following the discovery of a pharmacologically active natural product is often fleeting due to the poor prospects for its ultimate clinical application. Despite this, the ever-changing landscape of modern biology has a constant need for molecular probes that can aid in our understanding of biological processes. After its initial discovery by Bristol-Myers Squibb as a microbial anti-tumor natural product, epoxomicin was deemed unfit for development due to its peptide structure and potentially labile epoxyketone pharmacophore. Despite its drawbacks, epoxomicin's pharmacophore was found to provide unprecedented selectivity for the proteasome. Epoxomicin also served as a scaffold for the generation of a synthetic tetrapeptide epoxyketone with improved activity, YU-101, which became the parent lead compound of carfilzomib (Kyprolis?), the recently approved therapeutic agent for multiple myeloma. In this era of rational drug design and high-throughput screening, the prospects for turning an active natural product into an approved therapy are often slim. However, by understanding the journey that began with the discovery of epoxomicin and ended with the successful use of carfilzomib in the clinic, we may find new insights into the keys for success in natural product-based drug discovery.

Site-Specific Proteasome Inhibitors

Proteasome is a multi-subunit protein degradation machine, which plays a key role in the maintenance of protein homeostasis and, through degradation of regulatory proteins, in the regulation of numerous cell functions. Proteasome inhibitors are essential tools for biomedical research. Three proteasome inhibitors, bortezomib, carfilzomib, and ixazomib are approved by the FDA for the treatment of multiple myeloma; another inhibitor, marizomib, is undergoing clinical trials. The proteolytic core of the proteasome has three pairs of active sites, β5, β2, and β1. All clinical inhibitors and inhibitors that are widely used as research tools (e.g., epoxomicin, MG-132) inhibit multiple active sites and have been extensively reviewed in the past. In the past decade, highly specific inhibitors of individual active sites and the distinct active sites of the lymphoid tissue-specific immunoproteasome have been developed. Here, we provide a comprehensive review of these site-specific inhibitors of mammalian proteasomes and describe their utilization in the studies of the biology of the active sites and their roles as drug targets for the treatment of different diseases.

Epoxomicin, a Selective Proteasome Inhibitor, Activates AIM2 Inflammasome in Human Retinal Pigment Epithelium Cells

Emerging evidence suggests that the intracellular clearance system plays a vital role in maintaining homeostasis and in regulating oxidative stress and inflammation in retinal pigment epithelium (RPE) cells. Dysfunctional proteasomes and autophagy in RPE cells have been associated with the pathogenesis of age-related macular degeneration. We have previously shown that the inhibition of proteasomes using MG-132 activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome in human RPE cells. However, MG-132 is a non-selective proteasome inhibitor. In this study, we used the selective proteasome inhibitor epoxomicin to study the effect of non-functional intracellular clearance systems on inflammasome activation. Our data show that epoxomicin-induced proteasome inhibition promoted both nicotinamide adenine dinucleotide phosphate oxidase and mitochondria-mediated oxidative stress and release of mitochondrial DNA to the cytosol, which resulted in potassium efflux-dependent absence in melanoma 2 (AIM2) inflammasome activation and subsequent interleukin-1β secretion in ARPE-19 cells. The non-specific proteasome inhibitor MG-132 activated both NLRP3 and AIM2 inflammasomes and oxidative stress predominated as the activation mechanism, but modest potassium efflux was also detected. Collectively, our data suggest that a selective proteasome inhibitor is a potent inflammasome activator in human RPE cells and emphasize the role of the AIM2 inflammasome in addition to the more commonly known NLRP3 inflammasome.

Suppression of the TRIF-dependent signaling pathway of TLRs by epoxomicin

Toll-like receptors (TLRs) can recognize specific signatures of invading microbial pathogens and activate a cascade of downstream signals to induce the secretion of inflammatory cytokines, chemokines, and type I interferons. The activation of TLRs triggers two downstream signaling pathways: the MyD88- and the TRIF-dependent pathways. To evaluate the therapeutic potential of epoxomicin, a member of the linear peptide α',β'-epoxyketone first isolated from an actinomycetes strain, we examined its effects on signal transduction via TLR signaling pathways. Epoxomicin inhibited the activation of NF-kB and IRF3 induced by TLR agonists, decreased the expression of interferon-inducible protein-10, and inhibited the activation of NF-kB and IRF3 induced by overexpression of downstream signaling components of TLR signaling pathways. These results suggest that epoxomicin can regulate both the MyD88- and TRIF-dependent signaling pathways of TLRs. Thus, it might have potential as a new therapeutic drug for a variety of inflammatory diseases.

Synthesis and Application of a Clickable Epoxomicin-Based Probe for Proteasome Activity Analysis

The proteasome is a multisubunit protein complex responsible for the degradation of proteins, making it essential in myriad cellular processes. Several reversible and irreversible peptide substrates inspired by known proteasome inhibitors have been developed to visualize it and monitor its activity; however, they have limited commercial availability or possess fluorophores that overlap with other known chemical probes, limiting their simultaneous use. The protocols presented here describe the synthesis of a clickable epoxomicin-based probe followed by the copper-catalyzed installment of an azide-containing fluorophore, and the application of the synthesized peptide in proteasome activity assays by SDS-PAGE and flow cytometry. ? 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Solid-phase synthesis of clickable peptide fragment (2) Basic Protocol 2: In-solution coupling of epoxy-ketone moiety to fragment (2) Basic Protocol 3: Copper-catalyzed click reaction of (3) with fluorophore of choice Basic Protocol 4: Monitoring proteasome activity by SDS-PAGE in HEK-293T cells Alternate Protocol: Monitoring proteasome activity by flow cytometry in HEK-293T cells.