Home>>Natural Products>>5(6)-TAMRA (5(6)-Carboxytetramethylrhodamine)

5(6)-TAMRA (5(6)-Carboxytetramethylrhodamine) Sale

(Synonyms: 5(6)-羧基四甲基罗丹明,5(6)-Carboxytetramethylrhodamine) 目录号 : GC30089

5(6)-TAMRA (5(6)-Carboxytetramethylrhodamine) 含有一种羧酸,可用于通过羧酸的碳二亚胺活化与伯胺反应;明亮的橙色荧光染料产生的结合物的吸收/发射最大值约为 555/580 nm。

5(6)-TAMRA (5(6)-Carboxytetramethylrhodamine) Chemical Structure

Cas No.:98181-63-6

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥687.00
现货
100mg
¥625.00
现货
200mg
¥1,071.00
现货
500mg
¥2,543.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

5(6)-TAMRA contains a carboxylic acid that can be used to react with primary amines via carbodiimide activation of the carboxylic acid; bright, orange-fluorescent dye produces conjugates with absorption/emission maxima of ~555/580 nm.

[1]. Fuchs SM, et al. Pathway for polyarginine entry into mammalian cells. Biochemistry. 2004 Mar 9;43(9):2438-44. [2]. Gerber D, et al. Insertion and organization within membranes of the delta-endotoxin pore-forming domain, helix 4-loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide. J Biol Chem. 2000 Aug 4;275(31):23602-7. [3]. Vinayak R, et al. Automated, solid-phase coupling of rhodamine dye acids to 5' amino oligonucleotides. Nucleic Acids Symp Ser. 2000;(44):257-8.

Chemical Properties

Cas No. 98181-63-6 SDF
别名 5(6)-羧基四甲基罗丹明,5(6)-Carboxytetramethylrhodamine
Canonical SMILES O=C(C1=C2C=CC(C(O)=O)=C1)OC32C(C=CC(N(C)C)=C4)=C4OC5=C3C=CC(N(C)C)=C5.O=C(C6=C7C=C(C(O)=O)C=C6)OC87C(C=CC(N(C)C)=C9)=C9OC%10=C8C=CC(N(C)C)=C%10
分子式 C25H22N2O5 分子量 430.45
溶解度 DMSO : 4.4 mg/mL (10.22 mM) 储存条件 Store at -20°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.3232 mL 11.6158 mL 23.2315 mL
5 mM 0.4646 mL 2.3232 mL 4.6463 mL
10 mM 0.2323 mL 1.1616 mL 2.3232 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

5-Carboxytetramethylrhodamine-Ampicillin Fluorescence Anisotropy-Based Assay of Escherichia coli Penicillin-Binding Protein 2 Transpeptidase Inhibition

The high-molecular mass penicillin-binding proteins (PBPs) are the essential targets of the β-lactam classes of antibacterial drugs. In the Gram-negative pathogen Escherichia coli, these include PBP1a, PBP1b, PBP2, and PBP3. Techniques that enable facile measurement of the potency of inhibition of these targets are valuable for understanding structure-activity relationships in programs aimed at discovering new antibiotics to combat drug-resistant infections. Continuous fluorescence anisotropy-based assays for inhibition of soluble constructs of PBP1a, PBP2, and PBP3 from the serious Gram-negative bacterial pathogens Pseudomonas aeruginosa and Acinetobacter baumannii and PBP3 from E. coli using the fluorescent phenoxypenicillin analogue BOCILLIN FL have been described previously, but this technique was not useful for PBP2 from E. coli due to a lack of change in fluorescence anisotropy or intensity upon reaction. Here, we report that a fluorescent analogue of ampicillin, 5-carboxytetramethylrhodamine-ampicillin (5-TAMRA-ampicillin), was useful as the indicator in a continuous fluorescence anisotropy-based kinetic assay for inhibition of a soluble construct of PBP2 from E. coli. The assay enables measurement of the bimolecular rate constant for inhibition kinact /Ki. This measurement was made for representative drugs from four classes of β-lactams and for the diazabicyclooctenone ETX2514. 5-TAMRA-ampicillin was also useful in a fluorescence anisotropy-based assay for P. aeruginosa PBP2 and in fluorescence intensity-based assays with PBP1a and PBP3 from P. aeruginosa and A. baumannii and PBP3 from E. coli.

Hypersensitive substrate for ribonucleases

A substrate for a hypersensitive assay of ribonucleolytic activity was developed in a systematic manner. This substrate is based on the fluorescence quenching of fluorescein held in proximity to rhodamine by a single ribonucleotide embedded within a series of deoxynucleotides. When the substrate is cleaved, the fluorescence of fluorescein is manifested. The optimal substrate is a tetranucleotide with a 5',6-carboxyfluorescein label (6-FAM) and a 3',6-carboxy-tetramethylrhodamine (6-TAMRA) label: 6-FAM-dArUdAdA-6-TAMRA. The fluorescence of this substrate increases 180-fold upon cleavage. Bovine pancreatic ribonuclease A (RNase A) cleaves this substrate with a k (cat)/ K (m)of 3.6 x 10(7)M(-1)s(-1). Human angiogenin, which is a homolog of RNase A that promotes neovascularization, cleaves this substrate with a k (cat)/ K (m)of 3. 3 x 10(2)M(-1)s(-1). This value is >10-fold larger than that for other known substrates of angio-genin. With these attributes, 6-FAM-dArUdAdA-6-TAMRA is the most sensitive known substrate for detecting ribo-nucleolytic activity. This high sensitivity enables a simple protocol for the rapid determination of the inhibition constant ( K (i)) for competitive inhibitors such as uridine 3'-phosphate and adenosine 5'-diphos-phate.

TAMRA- and Cy5-labeled probe for efficient kinetic characterization of caspase-3

Our objective was to create a novel fluorogenic substrate for efficient in vitro kinetic assays on caspase-3. We designed a TAMRA (5'-tetramethylrhodamine-5(6)-carboxamide)- and Cy5 (cyanine 5)-labeled probe that allowed us to evaluate the caspase-3 activity via the changes in fluorescence intensity and wavelength. The prepared probe was found to be an efficient and selective substrate of caspase-3, with V(max) of 41.4±3.3 nM/min and K(M) of 1.60±0.23 μM. The strategy used in the design of this fluorogenic substrate can be applied in future endeavors to development of substrates for caspase-3 inhibitor screening assays or for real-time detection of apoptosis in living cells.

Sequential Ag+/biothiol and synchronous Ag+/Hg2+ biosensing with zwitterionic Cu2+-based metal-organic frameworks

Zwitterionic metal-organic frameworks (MOFs) of {[Cu(Cbdcp)(Dps)(H2O)3]·6H2O}n (MOF 1) and [Cu4(Dcbb)4(Dps)2(H2O)2]n (MOF 2) (H3CbdcpBr = N-(4-carboxybenzyl)-(3,5-dicarboxyl)pyridinium bromide; H2DcbbBr = 1-(3,5-dicarboxybenzyl)-4,4'-bipyridinium bromide; Dps = 4,4'-dipyridyl sulfide) quench the fluorescence of cytosine-rich DNA tagged with 5-carboxytetramethylrhodamine (TAMRA, emission at 582 nm, denoted as C-rich P-DNA-1) and yield the corresponding P-DNA-1@MOF hybrids. Exposure of these hybrids to Ag+ results in the release of the P-DNA-1 strands from the MOF surfaces as double-stranded, hairpin-like C-AgI-C (ds-DNA-1@Ag+) with the restoration of TAMRA fluorescence. The ds-DNA-1@Ag+ formed on the surface of 1 can subsequently sense biothiols cysteine (Cys), glutathione (GSH), and homocysteine (Hcy) due to the stronger affinity of mercapto groups for Ag+ that serves to unfold the ds-DNA-1@Ag+ duplex, reforming P-DNA-1, which is re-adsorbed by MOF 1 accompanied by quenching of TAMRA emission. Meanwhile, MOF 2 is also capable of co-loading a thymine-rich probe DNA tagged with 5-carboxyfluorescein (FAM, emission at 518 nm, denoted as T-rich P-DNA-2) to achieve synchronous sensing of Ag+ and Hg2+, resulting from the simultaneous yet specific ds-DNA-1@Ag+ and T-HgII-T duplex (ds-DNA-2@Hg2+) formation, as well as the distinctive emission wavelengths of TAMRA and FAM. Detection limits are as low as 5.3 nM (Ag+), 14.2 nM (Cys), 13.5 nM (GSH), and 9.1 nM (Hcy) for MOF 1, and 7.5 nM (Ag+) and 2.6 nM (Hg2+) for MOF 2, respectively. The sequential sensing of Ag+ and biothiols by MOF 1, and the synchronous sensing of Ag+ and Hg2+ by MOF 2 are rapid and specific, even in the presence of other mono- and divalent metal cations or other biothiols at much higher concentrations. Molecular simulation studies provide insights regarding the molecular interactions that underpin these sensing processes.

Two-Step Energy Transfer Dynamics in Conjugated Polymer and Dye-Labeled Aptamer-Based Potassium Ion Detection Assay

We recently implemented highly sensitive detection systems for photo-sensitizing potassium ions (K+) based on two-step F?rster resonance energy transfer (FRET). As a successive study for quantitative understanding of energy transfer processes in terms of the exciton population, we investigated the fluorescence decay dynamics in conjugated polymers and an aptamer-based 6-carboxyfluorescein (6-FAM)/6-carboxytetramethylrhodamine (TAMRA) complex. In the presence of K+ ions, the Guanine-rich aptamer enabled efficient two-step resonance energy transfer from conjugated polymers to dyed pairs of 6-FAM and TAMRA through the G-quadruplex phase. Although the fluorescence decay time of TAMRA barely changed, the fluorescence intensity was significantly increased. We also found that 6-FAM showed a decreased exciton population due the compensation of energy transfer to TAMRA by FRET from conjugated polymers, but a fluorescence quenching also occurred concomitantly. Consequently, the fluorescence intensity of TAMRA showed a 4-fold enhancement, where the initial transfer efficiency (~300%) rapidly saturated within ~0.5 ns and the plateau of transfer efficiency (~230%) remained afterward.