Home>>Signaling Pathways>> Cancer Biology>>1-Stearoyl-rac-glycerol

1-Stearoyl-rac-glycerol Sale

(Synonyms: 单硬脂酸甘油酯) 目录号 : GC40176

A monoacylglycerol

1-Stearoyl-rac-glycerol Chemical Structure

Cas No.:123-94-4

规格 价格 库存 购买数量
100mg
¥793.00
现货
250mg
¥1,658.00
现货
500mg
¥3,100.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

1-Stearoyl-rac-glycerol is a monoacylglycerol that contains stearic acid at the sn-1 position. 1-Stearoyl-rac-glycerol levels are decreased in tumor tissue in a mouse model of azoxymethane-induced colorectal carcinogenesis. Levels of 1-stearoyl-rac-glycerol are decreased in lung tissue from patients with adenocarcinoma, but are increased in the serum of patients with Buruli ulcer and in the cerebrospinal fluid of patients with the inflammatory demyelinating diseases multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and idiopathic transverse myelitis (ITM). 1-Stearoyl-rac-glycerol has been used in the composition of transfersomes for transdermal delivery of doxorubicin in rats, leading to doxorubicin accumulation in lymph nodes, spleen, and heart.

Chemical Properties

Cas No. 123-94-4 SDF
别名 单硬脂酸甘油酯
Canonical SMILES O=C(CCCCCCCCCCCCCCCCC)OCC(O)CO
分子式 C21H42O4 分子量 358.6
溶解度 Chloroform: 50 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.7886 mL 13.9431 mL 27.8862 mL
5 mM 0.5577 mL 2.7886 mL 5.5772 mL
10 mM 0.2789 mL 1.3943 mL 2.7886 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Influence of linkage type (ether or ester) on the monolayer characteristics of single-chain glycerols at the air-water interface

Phys Chem Chem Phys 2020 Oct 21;22(40):23207-23214.PMID:33029597DOI:10.1039/d0cp04153j.

O-1-Alkylglycerols are ubiquitous constituents in various biological materials but their biological significance is still largely unknown. So far, reports about the striking role of structural features on the interfacial properties of 1-O-alkylglycerol monolayers are quite rare. Therefore, in the present paper 1-O-alkylglycerol monolayers are comprehensively characterized on mesoscopic and molecular scales in the accessible ranges of temperature and surface pressure. Two Bragg peaks found for the condensed monolayer phase of the racemates at all pressures investigated indicate an orthorhombic structure with NN-tilted alkyl chains at lower pressures and NNN-tilted chains at higher pressures. In contrast to the continuous change of the tilt angle, as observed for many amphiphile monolayers, the tilt angle in 1-O-alkyl-rac-glycerol monolayers shows a jump-like transition from the L2 (NN tilt direction) to the Ov phase (NNN tilt direction) with the consequence of different slopes of 1/cos(t) vs. π in the two phases. This is the most striking difference to the behavior of the corresponding ester compound 1-Stearoyl-rac-glycerol, having an oblique phase between the two orthorhombic phases L2 and Ov at low temperatures. The generic phase diagrams of the 1-O-alkyl-rac-glycerol and 1-acyl-rac-glycerol monolayers are essentially different. The influence of chirality on the monolayer structure is weak and becomes even weaker at high temperatures (rotator phases) and high lateral compression. The GIXD results of the enatiomeric pure compounds show the expected oblique lattice structure characterized by three Bragg peaks at almost all lateral pressures measured. The results of the GIXD studies are complemented by other monolayer characteristics such as π-A isotherms and mesoscopic domain topographies. The π-A isotherms of 1-O-alkyl-rac-glycerols are similar to those of the corresponding 1-acyl-rac-glycerols indicating that the change from the ester linkage to the ether linkage does not affect significantly the thermodynamic features. However, pronounced differences in the topological structure are observed. 1-O-hexadecyl-rac-glycerol monolayers form three-armed domains whereby each arm is subdivided into two segments with different molecular orientation. Also fascinating chiral discrimination effects are observable, demonstrated in the case of S-enantiomers by always clockwise curved spirals at the domain periphery. The 1 : 1 racemic mixtures exhibit both clockwise and counterclockwise curved spirals.

Quantitation and Taste Contribution of Sensory Active Molecules in Oat ( Avena sativa L.)

J Agric Food Chem 2020 Sep 16;68(37):10097-10108.PMID:32786831DOI:10.1021/acs.jafc.0c04022.

A total of 59 taste-active molecules were quantitated and then rated for their individual taste impact on the basis of dose-over-threshold factors in oat flour (Avena sativa L.). A sensitive high-performance liquid chromatography-tandem mass spectrometry method was developed to quantitate bitter-tasting steroidal and furostanol saponins as well as avenanthramides. Four monoglycerides, five free fatty acids and four saponins were confirmed for the first time to be major contributors to the bitter off-taste of oats, among them 1-linoleoyl-rac-glycerol, 1-Stearoyl-rac-glycerol, 1-oleoyl-rac-glycerol, 1-palmitoyl-rac-glycerol, linoleic acid, linolenic acid, oleic acid, palmitic acid, and stearic acid as well as avenacosides A and B and the recently identified furostanosides 3-(O-α-l-rhamnopyranosyl(1→2)-[β-d-glucopyranosyl(1→3)-β-d-glucopyranosyl(1→4)]-β-d-glucopyranosid)-26-O-β-d-glucopyranosyl-(25R)-furost-5-ene-3β,22,26-triol and 3-(O-α-l-rhamnopyranosyl(1→2)-[β-d-glucopyranosyl(1→4)]-β-d-glucopyranosid)-26-O-β-d-glucopyranosyl-(25R)-furost-5-ene-3β,22,26-triol. By means of a stable isotope dilution assay, quantitated avenanthramides 2c, 2p, 2f, 1p, 1c, 1f, and 3f were found in concentrations below their thresholds and, therefore, did not contribute to the bitter sensation of the tested oat flour.

Mechanism of Shiliu Buxue Syrup for anemia using integrated metabolomics and network pharmacology

Anal Biochem 2022 Sep 15;653:114774.PMID:35690102DOI:10.1016/j.ab.2022.114774.

For many years, Shiliu Buxue Syrup (SLBXS) has been used in the treatment of anemia in Xinjiang, China. However, the potential therapeutic mechanism of SLBXS in the treatment of anemia remains unclear. We qualitatively analyzed the ingredients of SLBXS and predicted the underlying mechanisms by network pharmacology. A mice model of anemia was established by subcutaneous injection of 1-Acetyl-2-phenylhydrazine (APH). Spleen metabolomics was performed to screen potential biomarkers and pathways related to anemia. Furthermore, core targets of crucial pathways were experimentally validated. Finally, molecular docking was used for predicting interactions between compositions and targets. Network pharmacology indicated that the 230 SLBXS ingredients may affect 141 target proteins to regulate the PI3K/AKT and HIF-1 signaling pathways. Metabolomics revealed that SLBXS could mediate 30 biomarkers, such as phosphoric acid, l-pyroglutamic acid, alpha-Tocopherol, 1-Stearoyl-rac-glycerol, and dihydroxyacetone phosphate, to regulate drug metabolism-other enzymes, glutathione metabolism, glycolysis or gluconeogenesis, nicotinate and nicotinamide metabolism, nitrogen metabolism, and purine metabolism. Western blot indicated that SLBXS can regulate the protein expression levels of AKT1, Bcl2, Caspase3, HIF-1α, VEGF-A, and NOS2. The molecular docking revealed that most of the compositions had a good binding ability to the core targets. Based on these findings, we speculate that SLBXS treats anemia mainly by modulating the PI3K/AKT and HIF-1 pathways and glutathione and glycolytic metabolisms.