Home>>Natural Products>>Sudan IV

Sudan IV Sale

(Synonyms: 溶剂红24,Solvent Red 24; C.I. 26105) 目录号 : GC39445

Sudan IV 是一种脂溶性重氮染料、可用于冰冻或石蜡切片上对脂类、甘油三酯和脂蛋白进行染色。

Sudan IV Chemical Structure

Cas No.:85-83-6

规格 价格 库存 购买数量
25g
¥157.00
现货
100g
¥314.00
现货
500g
¥638.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Sudan IV is a lysochrome (fat-soluble dye) diazo dye used for the staining of lipids, triglycerides and lipoproteins on frozen paraffin sections[1].

[1]. Refat NA, et al. The induction of cytochrome P450 1A1 by sudan dyes. J Biochem Mol Toxicol. 2008 Mar-Apr;22(2):77-84.

Chemical Properties

Cas No. 85-83-6 SDF
别名 溶剂红24,Solvent Red 24; C.I. 26105
Canonical SMILES OC1=CC=C2C=CC=CC2=C1/N=N/C3=CC=C(/N=N/C4=CC=CC=C4C)C=C3C
分子式 C24H20N4O 分子量 380.44
溶解度 DMSO: < 1 mg/mL (insoluble or slightly soluble) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.6285 mL 13.1427 mL 26.2854 mL
5 mM 0.5257 mL 2.6285 mL 5.2571 mL
10 mM 0.2629 mL 1.3143 mL 2.6285 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Multifunctional Carbon Dots-Based Fluorescence Detection for Sudan I, Sudan IV and Tetracycline Hydrochloride in Foods

Nanomaterials (Basel) 2022 Nov 24;12(23):4166.PMID:36500788DOI:10.3390/nano12234166.

Sudan dyes are strictly prohibited from being added to edible products as carcinogens and tetracycline hydrochloride (TC) remaining in animal-derived food may cause harm to the human body. Therefore, it is necessary to establish a high-sensitivity, simple and convenient method for the detection of Sudan dyes and TC in foods for safety purposes. In this work, multifunctional blue fluorescent carbon dots (B-CDs) were prepared by a one-step hydrothermal synthesis using glucose as the carbon source. The results show that the fluorescence intensity of B-CDs was significantly affected by the acidity of the solution and can be quenched by Sudan I, IV and TC through selective studies. Interestingly, the fluorescence quenching intensities of B-CDs have a good linear relationship with the concentration of Sudan I and IV at pH = 3-7. The wide range of pH is beneficial to broaden the application of B-CDs in a practical samples analysis. The method has been successfully applied to real food samples of tomato paste, palm oil and honey, and the detection limits are 26.3 nM, 54.2 nM and 31.1 nM for Sudan I, Sudan IV and TC, respectively. This method integrates Sudan dyes and TC into the same multifunctional B-CDs, which shows that the sensor has a great potential in food safety detection.

Binding of Sudan II and Sudan IV to bovine serum albumin: comparison studies

Food Chem Toxicol 2011 Dec;49(12):3158-64.PMID:21951948DOI:10.1016/j.fct.2011.09.011.

In this paper, we report the interaction of Sudan II and Sudan IV to bovine serum albumin (BSA). Structural analysis showed that both Sudan II and Sudan IV interact mainly with BSA at the hydrophobic pocket and via Van der Waals forces. The number of bound Sudan molecule for each protein molecule was approximately 1. The overall binding constants at 293 K (20°C) estimated for Sudan II and Sudan IV were 1.22 × 10(4)M(-1) and 1.48 × 10(4)M(-1), respectively. BSA backbone structure was damaged by the dyes with more severe phenomenon observed for Sudan IV. For two Sudan dyes with the same concentration, Sudan IV could cause more alterations on CD spectra of BSA with slight decrease of α-helical content and increase of β-sheet content, suggesting a partial protein unfolding.

Comparison of the toxicity of the dyes Sudan II and Sudan IV to catalase

J Biochem Mol Toxicol 2017 Oct;31(10).PMID:28613393DOI:10.1002/jbt.21943.

The mechanisms of the toxicity of Sudan dyes to the key antioxidant enzyme catalase (CAT) were investigated by spectroscopic methods, calorimetry techniques, enzyme activity assay, and molecular docking. Results showed that Sudan dyes bound to CAT through hydrophobic force, which changed the microenvironment of tryptophan and tyrosine residues, leading to a conformational alteration and shrinkage of the protein. Enzyme activity assay and molecular docking revealed that the activity of CAT was slightly inhibited in the presence of Sudan dyes. In comparison, the binding of Sudan II with CAT was slightly stronger than Sudan IV. Also, Sudan II and Sudan IV showed a different impact on the microenvironment of aromatic amino acid residues. But the dyes had very similar effects on conformation and activity of the protein. This work provides an essential reference for the evaluation of Sudan dyes' effects on body's antioxidant defense system and safe use of Sudan dyes.

Adsorption of Sudan-IV contained in oily wastewater on lipophilic activated carbons: kinetic and isotherm modelling

Environ Sci Pollut Res Int 2020 Jun;27(17):20770-20785.PMID:32248414DOI:10.1007/s11356-020-08473-1.

Up to nine kinetic and fourteen isotherm adsorption models are employed to model the adsorption of Sudan IV, a lipophilic model pollutant present in a biphasic mixture of cyclohexane-water system to simulate oily wastewater. Six different modified activated carbons were used as adsorbents. The highest amount adsorbed of Sudan IV was found in the material prepared by successive treatments of the parent commercial activated carbon Norit ROX 0.8 with nitric acid and urea, followed by thermal treatment at 800 °C under continuous flow of nitrogen. Kinetic and isotherm adsorption models can be employed to simulate the process, since the effect of the presence of water in the adsorption of Sudan IV from the cyclohexane phase was found to be negligible, owing to the high lipophilic character of both adsorbent and adsorbate. All kinetic and isotherm coefficients, coupling with statistical parameters (r2, adjusted r2 and sum of squared errors), are determined by non-linear regression fitting and compared to literature data. The model of Avrami is found to be the most appropriate model to represent the adsorption of the pollutant in any of the six modified carbons tested, the highest value of the kinetic constant being 0.055 min-1. The isotherm adsorption is well-modelled by using the general isotherm equation of Tóth and the multilayer Jovanović expression for the adsorption of Sudan-IV on that material, resulting in a high monolayer uptake capacity (qm = 193.6 mg g-1).

Optical screening for presence of banned Sudan III and Sudan IV dyes in edible palm oils

Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020 Jul;37(7):1049-1060.PMID:32077804DOI:10.1080/19440049.2020.1726500.

Due to the proven carcinogenicity of Sudan III and IV dyes, they are considered global public health issues. They are banned in all forms as food colourants. We propose the monitoring of simple and easy-to-measure optical properties of palm oils, such as the refractive indices and spectrophotometric properties, as efficient indicators to detect adulteration. Coupling these results with principal component analysis, excess refractive index, and integration of transmittance introduces a novel detection tool for the authentication of edible palm oil. This opens a new opportunity for accurate handheld devices to detect adulteration and provide control in the field. This work assessed in total of 49 samples, some collected from different parts of Ghana and others, in-house adulterated samples. The Ghana Food and Drugs Authority, who performed a complex and expensive chemical analysis of the samples, confirmed our results with good agreement.